Строительные машины и оборудование, справочник



Категория:
   

Публикация:
   Естественная история машин, эволюция машин

Читать далее:




Естественная история машин, эволюция машин

ЭВОЛЮЦИЯ МАШИН
Краткая история

Если бы мы могли воспользоваться машиной времени и двинуться назад в прошедшие годы, столетия, тысячелетия.., то вначале (еще в нашем веке) исчезнут самолеты, потом автомобили и паровозы, исчезнет электрическое освещение, пропадут паровые, а затем и ветряные мельницы, исчезнут плуг, веялка и сеялка, останется только деревянная соха. Еще некоторое время сохранится ткацкий станок, гончарный круг и ручная мельница. Затем их не станет и мы окажемся среди первобытных людей, которых от создателей первых машин будут отделять многие и многие поколения.

По мнению большинства археологов и палеонтологов, человекоподобные (гоминиды) впервые появились в Восточной Африке более десяти миллионов лет назад. Около четырех миллионов лет назад на арену жизни вышли гоминиды — австралопитеки. Еще через полтора миллиона лет эти существа пришли к использованию обломков камней, костей животных и рыб в качестве простейших орудий труда. Гоминиды этой эпохи были довольно развитыми прямоходящими существами, и по биологическим признакам резких отличий между ними и современными людьми не обнаружено.

Рекламные предложения на основе ваших интересов:


Дополнительные материалы по теме:


Каменные орудия, которые изготовлял древний человек, прошли чрезвычайно длительную эволюцию. Эпоха первоначального овладения камнем и навыками его примитивной обработки носит название палеолита. Основные занятия — охота и собирание плодов — определили типы орудия: нож, топор, скребок, игла, наконечники копья и стрелы — все это модификации клина. Палка как орудие и как рычаг также относится к древнейшим приобретениям человека. Поддержание и использование огня, рожденного стихийными силами природы, начались около четырехсот тысяч лет назад (освоение огня и изобретение средств для его добывания произошли значительно позже).

Около ста тысячелетий назад возникает изобразительное искусство, очевидно, как один из способов запоминания и ориентирования на местности. В большей мере это относится к изображениям людей и животных, в меньшей — к орнаменту, который несомненно связан с разложением понятия «много» и с появлением числа и счета. Первобытное искусство — доказательство того, что человек начал рассуждать. В борьбе за свое существование человек приобретает знания и умения, объем которых медленно, но непрерывно увеличивается.

Техника изготовления орудий совершенствуется, убыстряется освоение новых умений. Изобретается лук, т. е. орудие для метания стрел, для изготовления которого человек оценивает относительную гибкость и упругость дерева. Для охоты на зверей изобретаются и ловушки, иногда уже довольно сложной конструкции, которые срабатывают, когда зверь наступает на одно из звеньев. Позже осуществляется переход к производству продуктов питания — выращиванию злаков и иных растений, одомашниванию животных. В истории человечества это была вторая важнейшая хозяйственная революция после освоения огня. Человек получил более обильный и надежный источник пищи и начал переходить к оседлому образу жизни. Следствием был рост народонаселения. Этот период, длившийся около пяти тысяч лет и закончившийся к VI—VII вв. до н. э., был назван неолитом.

Естественно, что никаких резких границ между периодами древнего, среднего и нового каменных веков — палеолитом, мезолитом и неолитом — не было. Каменный век заканчивался у разных племен в разное время (некоторые из них живут в каменном веке вплоть до настоящего времени). Постепенно люди расселялись и осваивали новые земли. Разные условия труда и жизни определили и различия в орудиях труда: человеку, уходившему на север, надо было уделять больше внимания сооружению жилищ и изготовлению одежды, чем его экваториальному современнику.

Период неолита характеризуется все более сложной обработкой камня, осваивается шлифовка. Орудия труда умножаются качественно и количественно. Для хранения пищи изготавливаются глиняные горшки. Кости и раковины служат для изготовления рыболовных крючков, гарпунов. Из шкур вырабатываются кожи, из растительных волокон — нити. Появляются и первые ручные мельницы — два отшлифованных камня, с помощью которых растираются зерна. Осваивается вращательное движение: изобретается колесо, гончарный круг, круговая ручная мельница. Все это — путь к изобретению простейших машин.

Основные занятия племен — земледелие или скотоводство, охота и рыболовство — достуИны любому из его членов. Все умеют растирать зерно, готовить пищу, шить одежду. Но рядом со всеми уже появляется кузнец, гончар, ткач. Начинается обмен изделиями, т. е. изделия становятся товаром. Первобытное общество теряет свое имущественное равенство. Пленных, захваченных в борьбе за новые территории, не убивают, а заставляют выполнять тяжелую работу, в первую очередь для старейшин племени. Возникновение частной собственности связано, таким образом, с общественным разделением труда: первобытное общество порождает рабовладельческое.

Затем появляются государства-города, государства-империи. В больших государствах возможно сложное разделение труда, выше профессиональное мастерство ремесленников, запас орудий и технических средств растет быстрее. Наконец, появляются и машины.

Машина заменяет живую силу. Пожалуй, первой машиной в современном понимании следует назвать водяную мельницу, т. е. не что иное, как преобразователь энергии водяного потока в энергию вращения. Это простейшее устройство состоит из основного колеса, двух цевочных колес и рабочего органа — двух жерновов, неподвижного и подвижного. Первые мельницы появились на горных речках и быстро распространились повсюду, где можно было создать перепад воды. Это изобретение было революционным событием: на машину был переложен тяжелый труд. Можно только представить себе, сколько людей должны были работать вручную, чтобы накормить население даже небольшого города.

Изобретение мельниц было встречено с восторгом: о мельницах слагались песни, поэты посвящали им оды — так машина входила в жизнь человека. Не лишен интереса и тот факт, что одновременно с изобретением мельниц появились и зачатки научных знаний.

Другими областями человеческой деятельности, в результате которой возникли машины, были строительство и водоснабжение. Появляются устройства для подъема и перемещения тяжестей, принцип работы которых сохранился и в современных грузоподъемных механизмах.

Совершенствование лука и пращи привело к изобретению военных машин. Были созданы два основных типа таких машин — катапульты, которые метали стрелы, и баллисты, метавшие камни. Движителем была упругая сила канатов, свитых из воловьих жил или из волос. Военные машины — первые приспособления, размеры которых рассчитывались. Расчетным модулем служила величина отверстия, через которое пропускался канат. Были малые машины, метавшие камни по два фунта весом, но строились и машины внушительных размеров, которые метали камни по двести—триста фунтов. При закручивании каната перед броском камня обе его ветви настраивались по слуху на один тон. В противоположность непрерывно действующим мельницам военные, а также грузоподъемные и водоподъемные механизмы действовали как бы дискретно.

Трудно установить время изобретения тех или иных машин, возможно, что они изобретались неоднократно, в результате эволюционного развития простейших механических приспособлений. Их можно было бы назвать приспособлениями динамическими, так как они создавались для экономии человеческой силы. Но почти одновременно с такими машинами появляются и иные приспособления, которые можно было бы назвать кинематическими, потому что они служили для преобразования не силы, а движения. Их можно назвать автоматами, происхождение которых весьма древнее и, несомненно, генетически связанное с теми звериными ловушками, о которых уже шла речь.

Сочинение об автоматах написал ученый эпохи позднего эллинизма Герон Александрийский, но можно предполагать, что описанные им автоматы были изобретены намного раньше. Движение фигур и их элементов осуществлялось в автоматах по прямой линии, по кругу, по произвольной кривой. Каждое движение производилось при помощи нитей, навернутых на барабаны или блоки различного диаметра и натягиваемых грузиками. В некоторых местах нити имели ненатянутые участки (петли) для того, чтобы одно движение запаздывало относительно другого. Со временем система привода у автоматов усложняется: у них уже есть что-то общее с современными автоматами (главный вал) и манипуляторами (поэлементный привод). Но первые и последние разделяет около двух с половиной тысяч лет! С помощью таких автоматов проводились театрализованные и религиозные действия; наряду с малыми автоматами были и большие, управлявшие движениями статуй. Замечено как-то, что по принципу действия современный торговый автомат очень напоминает древнеегипетский автомат, выдававший воду в обмен на монетку.

Изобретение пневматики связывается с именем александрийского механика Ктесибия. В рабовладельческой Греции III в. до н. э. отношение к механике было пренебрежительным, занятие ею считалось недостойным свободного человека. Не то в Александрии: этот космополитический город, столица эллинистического Египта, был тогда центром прикладной науки. Здесь Ктесибий занимался пневматическими и гидравлическими приборами. Он изобрел двухцилиндровый пожарный насос, который ни в чем существенно не отличается от современного, водяные часы, водяной орган, а также аэротрон — военную машину, в которой руль упругого тела играл сжатый воздух. Как пожарный насос, так и аэротрон представлял собой цилиндр с движущимися внутри них поршнями. Это первое в истории техники упоминание о кинематической паре цилиндр—поршень.

Вспомним, что великий математик и механик Архимед, один из самых замечательных ученых в истории человечества, родился в Сиракузах на острове Сицилия, но учиться поехал в ту же Александрию. Он добился очень многого. В математике он дошел до изобретения интегрального исчисления, намного опередив свое время. Он изобрел винт, усовершенствовал зубчатое колесо, нашел закон, носящий его имя, изобрел много новых машин. Во время осады родного города римлянами он создал новые военные машины, которые надолго задержали превосходящие силы римлян под стенами Сиракуз. Но все же город пал, и некий римский солдат убил Архимеда. Сохранилось предание, что последними словами великого ученого были: «Не трогай моих чертежей!»

К сожалению, до нас дошло мало сведений об инженерах древности: некоторые из них оставили написанные ими книги, у других известны лишь имена. Так, выше мы упоминали Герона Александрийского. До сих пор не совсем ясно, когда он жил: может быть, в первом веке нашей эры, а быть может, двумя веками раньше. Некоторые даже считают его учеником Кте- сибия. Но зато сохранилось несколько его сочинений, по которым мы можем судить об уровне античной механики.
В своем сочинении «Театр автоматов» Герои описывает храмовые и театральные автоматы. По его словам, «представления автоматических театров пользовались в старину большой любовью, во-первых, потому, что в устройстве их проявлялось много механического искусства, а затем и потому, что самое представление бывало поразительным, ибо как раз при устройстве автоматов для различных их деталей приходится пользоваться всеми познаниями механики». Писал Герон и о военных машинах, но это его сочинение до нас не дошло.

Сейчас мы знаем, что в Древней Греции военные машины были очень распространены, и некоторые города имели целые арсеналы таких машин. Впрочем, подобная военная техника возникла и в других странах. Исходные метательные приспособления, лук и праща, независимо появились в разных уголках земного шара, и совершенствование их шло параллельными путями, которые, возможно, где-то и пересекались. Так, около пятисот лет до нашей эры в Китае древнейший камнемет представлял собой упругий шест, вкопанный в землю, к которому крепилась праща, несущая «снаряд» — камень.

В Римской империи были изобретены некоторые сельскохозяйственные и строительные машины. В конце I в. до н. э. римский архитектор и инженер Марк Витрувий Поллион написал «Десять книг об архитектуре». Его сочинение прожило долгую и славную жизнь: им пользовались как руководством по крайней мере полторы тысячи лет. Десятая книга сочинения посвящена машинам, и здесь же дано, вероятно, первое определение машины: «Машина есть сочетание соединенных вместе деревянных частей, обладающее огромными силами для передвижения тяжестей». Согласно Витрувию машины и орудия различаются тем, что машины для выполнения работы требуют большего числа рабочих или применения большей силы (таковы, например, баллисты и давильные прессы), орудия же выполняют задание умелой рукой одного человека.

Механики последующих двух столетий почти ничего не добавили к учениям древних в отношении машин. Правда, были введены некоторые усовершенствования. Так, в водяных мельницах у одного колеса появилось несколько приводов. Кое-какие улучшения внесли и в устройство военных машин, но все это было делом практиков, а не ученых.

В Византийской империи уровень познаний в области практической механики был относительно высоким. Известно, что в Константинополе был арсенал с большим количеством военных машин. Одновременно в границах Арабского халифата создавалась новая наука, причем ее создателями были все народы, населявшие халифат,— хорезмийцы, сирийцы, тюрки, египтяне, арабы, испанцы. Объединяющим для всех них был арабский язык, язык науки и религии.

Главным источником знаний арабоязычных народов в области практической механики были сочинения греческих ученых, переведенные на арабский язык. Но эти знания были не только усвоены, но и развиты. Так, в средневековом арабском сочинении IX в. «Ключи науки» сообщаются сведения о простых машинах, о водяных и ветряных мельницах, о военных машинах и об автоматах.

Мы упомянули здесь о «простых машинах». Этот термин в течение очень длительного времени применялся для обозначения простейших подъемных приспособлений — рычага, блока, наклонной плоскости, клина и винта. Как мы увидим дальше, ни одно из этих приспособлений нельзя в полном смысле назвать машиной, и произошел этот термин, вероятно, от неправильного перевода того слова, которым Герон Александрийский обозначил эти простейшие подъемные приспособления. Ниже мы еще раз коснемся этого вопроса. Впрочем, на протяжении многих столетий вплоть до конца XIX в. и само понятие «машина» было неопределенным.

Развитие техники в арабоязычных странах определялось многими условиями: необходимостью создания системы орошения, ростом городов и связанных с ним строительством зданий, увеличением горной выработки, развитием торгового и военного судоходства, в частности ростом пиратского флота (ибо пиратство было тогда одним из важных занятий прибрежного населения Средиземноморья). Возникает много разных типов водоподъемных машин, приводимых в движение силой воды или силой животных.

В X—XI вв. производство муки на ручных мельницах было повсеместно прекращено. Водяные мельницы ставились не только на реках: в Басре в устьях каналов, питавшихся водой за счет прилива, были выстроены мельницы, которые приводила в движение вода, отступавшая во время отлива. В Месопотамии на Тигре действовало много плавучих мельниц. Мельницы Мосула висели на железных цепях посредине реки; каждая мельница Багдада имела по сто жернопос- тавов.
Ветряные мельницы впервые появились в Афганистане в IX в.: лопасти ветряного колеса располагались в вертикальной плоскости и были прикреплены к валу, который и приводил в движение верхний жернов. Почти одновременно с ветряными мельницами были изобретены и регулирующие устройства. Необходимость в таких устройствах диктовалась тем, что крылья мельницы были связаны с жерновом практически напрямую, и, следовательно, скорость его вращения сильно зависела от «капризов» ветра. В Афганистане все мельницы и водочерпальные колеса приводились в движение господствующим северным ветром, и поэтому ориентированы только по нему. На мельницах были устроены люки, которые открывались и закрывались, чтобы сила ветра была то больше, то меньше, поскольку при сильном ветре «мука горит и выходит черной, порой даже жернов раскаляется и разваливается на куски».

В странах арабского халифата большое распространение получило ткацкое искусство. Так, в Египте производились льняные и шерстяные ткани. Это мастерство перешло затем в Персию. Хлопок начали ткать в Индии, откуда он перешел в страны Средней Азии. В X в. хлопчатобумажные ткани из Кабула вывозили в Китай и в Персию. Центром шелкопрядения была Византия, шерстяные ковры ткали в Армении, Персии и Бухаре. Причем армянские ковры считались лучшими.
Такое массовое производство тканей для рынка явилось результатом совершенствования техники прядения и ткачества. Преобразование поступательного движения во вращательное с помощью педального механизма, освоенное в конструкции гончарного круга, вошло затем в конструкцию прядильного механизма, что улучшило качество пряжи и ускорило ее производство. Была усовершенствована конструкция ткацкого стана, который в античные времена представлял собой примитивную деревянную раму с простейшими механическими приспособлениями. Техники арабского Востока внесли в него ряд усовершенствований. По- видимому, около II в. до н. э. в Китае был изобретен станок с подвижными шнурами для поднятия и опускания нитей после каждого пролета челнока. Этот станок был затем освоен ткачами Средней Азии и Ближнего Востока.

Так было в средние века. Машины уже прожили полторы тысячи лет, но мало в чем изменились. Кроме силы животных и воды, начали осваивать еще и силу ветра. Возникали новые машины, но они по принципу своего действия не отличались от старых: они, как и раньше, создавались ради экономии человеческого труда и вовлечения в работу мощных сил природы, превосходящих силу человека и животных. Как в годы Витрувия, так и тысячу лет после него машины делаются в основном из дерева, металлические детали крайне редки. Число механизмов, используемых при построении машин, остается одним и тем же, несмотря на то что еще Герону были известны многие остроумные машины.

Западная Европа могла черпать технические знания из трех источников. Первым было римское наследство, зачастую переработанное на местах. Второй источник — исламские сочинения XI—XIII вв. Третий— труды древних греков, которые сохранялись в Византии, а затем попали в Западную Европу несколькими путями: в XIII в. в результате грабежа крестоносцами византийских ценностей, в том числе и культурных, или в XV в. после падения Константинополя, когда многие византийские ученые, бежавшие на Запад, принесли с собой свое наиболее ценное достояние — греческие рукописи.

Страны Западной Европы получили в наследство от Римской империи отличные дороги и акведуки, водяные мельницы, военную технику и самые элементарные строительные приспособления. Ветряные мельницы, очевидно, распространялись через Испанию.

О конструкциях первых европейских ветряных мельниц ничего не известно, но, по-видимому, ветряное колесо сразу же начали располагать в вертикальной плоскости. Скорее всего, по своей конструкции ветряки отличались от водяных мельниц лишь положением движителя и главного вала. К концу XII в. они получили распространение во Франции и Англии, в основном в тех районах, где рек было недостаточно. В XI в. в Англии насчитывалось более пяти тысяч водяных мельниц. В то же время ветряные мельницы появились в Голландии, в XIII в.— в Германии, в XIV в.— в Польше и на Украине.

Основное назначение мельниц — помол зерна. Однако уже в XII в. кому-то пришла в голову мысль заменить рабочие органы мельницы — жернова — другими органами, предназначенными для выполнения другой работы. В простейшем случае на главном валу мельницы вместо цевочного колеса был жестко закреплен кулак, он уже «управлял» рабочим органом. Так, в XII—XIII вв. появились сукноваляльные, железо- и бумагоделательные мельницы. Были и иные попытки использования силы водяного колеса. Зодчий Виллар де Оннекур из Пикардии, о котором известно, что он занимался строительством соборов, оставил после себя записную тетрадь, заполненную эскизами. Один из эскизов изображал мельницу, которая вместо жерновов имела… пилу, приводимую в движение с помощью шарнирного четырехзвенника.

Именно в это время жил великий английский естествоиспытатель и философ Роджер Бэкон, считавший, что истинное знание должно основываться на изучении природы и что основой каждой науки должна быть математика. Его мысли о будущем похожи на предвидения: он писал о том, что возможны такие орудия, при помощи которых «большие корабли, управляемые только одним человеком, будут двигаться по морю с большей быстротой, чем на всех парусах, что можно будет построить экипажи, которые помчатся с невероятной скоростью без помощи животных», что будут созданы такие машины, при помощи которых «человек, сидя спокойно и наблюдая различные окружающие предметы, рассекал бы воздух искусственными крыльями, наподобие птицы», что с помощью небольшого орудия можно будет поднимать величайшие тяжести, что можно построить и такие машины, которые дадут людям возможность ходить по дну морей и рек, не подвергаясь опасности.

Так говорил человек, который переплывал через Ла-Манш в утлом суденышке, ехал в Париж верхом на муле или в скрипучей повозке, а за вольнодумство долгие годы сидел в одиночной камере. Одним из первых Роджер Бэкон пришел к утверждению, что «опытные» науки имеют преимущество перед «умозрительными», так как они проверяют свои заключения опытом, открывают истины, к которым нельзя было бы прийти иным способом, выясняют тайны природы и знакомят нас с прошедшим и будущим.

Еще один интересный мыслитель XIII в. жил в Каталонии. Это был Раймунд Луллий. Желая ввести в метафизические спекуляции точные методы расчета, он полагал, что все знания являются лишь частными случаями всеобщей науки, названной им великим искусством. Существует мнение, что именно он первым высказал идею создания вычислительной машины.

В X—XI вв. были изобретены механические часы. Их изобретение приписывается разным лицам. В частности, изобретателем часов называют математика Герберта Орийякского, который ввел в Европе «арабские» цифры и слыл «чернокнижником». Избранный римским папой и принявший имя Сильвестра II, он вскоре умер. Предполагают, что он был отравлен. В качестве изобретателей механических часов называют и других лиц. Во всяком случае схемы первых башенных часов были различными. С течением времени часы стали сложнее. Можно считать, что изобретение и изготовление часов определенным образом способствовали становлению механики. Очевидно, например, что зубчатые колеса столь широко распространились в технике во многом благодаря изобретению часов.
Итак, мы не знаем точно, когда и как были изобретены часы. Согласно некоторым документам около 1286 г. они были в Англии, около 1300 г. — во Франции, около 1335 г. — в Италии. До нашего времени дожил часовой механизм собора в Солсбери, построенный в 1386 г. Он состоит из двух серий колес, приводимых в движение гирями: одной — для указания времени, другой — для боя.

Техника построения машин постоянно развивалась. В конце XIII в. в Западную Европу попало прядильное колесо с бесконечным ремнем. Под влиянием «арабских» образцов ткацкий станок получил отдельный привод, тем самым энергетическая функция была отделена от функции технологической: последняя осталась за руками.

Росло и число механизмов, известных техникам. Привод ворота породил рукоятку, изогнутую дважды под прямым углом, отсюда недалеко и до коленчатого вала, который появился в XIII в. в качестве удобного привода для ручной мельницы. Постепенно распространяются шарнирные механизмы.

Самое существенное в конструировании машин заключалось в том, что оно сопровождалось постоянным обменом идеями. Изобретения, рожденные на Востоке, вскоре обнаруживаются в западных странах, и наоборот. Конечно, каждый лучше знал своего ближайшего соседа, а то, что делали в отдаленных странах, знали лишь понаслышке, если вообще знали. Поэтому китайское или индийское изобретение доходило до Европы через одно-два столетия, не короче по времени был и обратный путь. Так, в III—V вв. в Китае был «изобретен» прибор для измерения расстояний — копия изобретения Герона Александрийского. В Китай он попал, по-видимому, через Индию. Водяная мельница появилась в Китае во II или III вв., а технологические мельницы — в XIII столетии, одновременно с западноевропейскими.

Особенно ясно этот «обмен идеями» проявился в развитии военных машин. Средневековые метательные машины строились по тем же принципам, что и античные, но менялись их типы, габариты, метаемые объекты, скорострельность. В частности, фрондибола была той же метательной машиной, только снабженной противовесом: к короткому плечу рычага, вращавшегося около оси, закрепленной в раме, подсоединялся противовес, а к длинному плечу подвешивалась праща. Аркбаллиста была комбинацией мощного лука с лебедкой для натягивания тетивы. Более тяжелой машиной для метания стрел была бриколь — в ней использовалась упругость дерева.

В Китае к VII—X вв. также были выработаны основные типы военных машин, наибольшего расцвета они достигли в X—XII вв. В VII в. китайские метательные машины попали в Корею и Японию, а также в Среднюю Азию. Но, по-видимому, среднеазиатские страны уже имели метательные машины греческого происхождения. Позже проявляется обратное влияние: некоторые типы камнеметов, построенные в Китае, назывались мусульманскими.

В самом начале XIII в. с китайской военной техникой ознакомились монголы. В середине XIII в. монгольский богдыхан Хубилай начал войну за захват всего Китая. Его войска осаждали китайские крепости, при этом монголы впервые применили так называемые мусульманские метательные машины. В западных походах монголы пользовались и китайскими, и мусульманскими военными машинами. Известно, что с их помощью в XIII в. хан Батый овладел Киевом.

Конструкция китайских камнеметов была иной, чем западных метательных машин. Основным упругим элементом в них был деревянный шест, лафеты были стационарными и передвижными, на колесах. Аркбаллис- ты имели иногда поворотное устройство, с помощью которого можно было вести круговой обстрел. Для натягивания тетивы применялся ворот.

Интересен вопрос о взаимовлиянии мирной техники непрерывного действия и военных машин дискретного действия. И в том, и в другом случае приводным механизмом служит ворот, с помощью которого можно получить необходимую степень натяжения упругого элемента. Упругость тетивы лука использовалась в ранних моделях токарного станка для приведения во вращение деревянной заготовки. В течение длительного времени, на протяжении полутора тысячелетий, подъемная, водоподъемная, мельничная техника мало в чем изменялась, тогда как военная техника развивалась быстрее, причем создавались новые типы вооружения. Отсюда несколько скептическое отношение средневековых ученых к механике, выразившееся, в частности, в своеобразном пояснении самого термина «механика»: его выводили от сходного по звучанию греческого слова, означающего разврат.

Переход к огнестрельному оружию поставил перед механиками новые задачи: улучшение техники изготовления стволов, обеспечение их прочности и точности стрельбы. Само открытие пороха — нового источника энергии дискретного действия явилось, по-видимому, результатом деятельности техников разных стран. Так, в последней четверти VII в. византийцы впервые применили «греческий огонь». Почти одновременно в китайском алхимическом сочинении был описан горючий состав из серы, селитры и древесного угля. К началу X в. порох в Китае начали применять в военных целях — ранее пороховые смеси имели не метательное, а зажигательное назначение. Порох совершенствовался, и к началу XV в. было изобретено огнестрельное оружие.

Параллельно шло совершенствование пороховых смесей в Западной Европе. Изобретателями пороха считали естествоиспытателя Роджера Бэкона, монаха Бертольда Шварца, а также некоторых алхимиков. Так же, как и на Востоке, здесь в начале XIV в. появляется огнестрельное оружие. Уже в середине XIV в. англичане под предводительством короля Эдуарда III обстреляли город Кале. Одновременно огнестрельное оружие попадает и на Русь, сперва с Запада, а затем и с Востока. Соответственно образуются и военные термины «гарматы» и «тюфяки». Спустя столетие строились пушки весом до 300 кг из железных полос, сваренных в полый цилиндр и скрепленных обручами.

Однако результативность нового оружия была небольшой. Так, известно, что во время обороны Галича осаждавшие применили артиллерию. «Но ни во что же бысть се им, — писал летописец, — божиею благодатию не убиша бо никого же…» Так было не только на Руси: первые пушки если и убивали кого- либо, то в первую очередь пушкарей. Все это привело к необходимости создания новой технологии: от сварки полос перешли к отливке и к сверлению заготовок. Таким образом, можно считать, что рядом с поршневым насосом именно пушка стоит у колыбели паровой машины.

Так в жизнь человека вошли машины непрерывного и дискретного действия. Казалось бы, между ними нет точек соприкосновения, однако это не так. Обработка орудийных и ружейных стволов стимулировала развитие металлообработки и подъемной техники. Повысилась роль металла: части машин начинают делать не только из дерева, но и из металла.

В целом производство машин зависело от качества материалов и от их наличия. Но дело не только в этом. Видимыми и невидимыми нитями само конструирование машин уже во времена их затянувшейся юности связано с естествознанием, математикой, искусством — со всеми направлениями развития человеческой культуры. На протяжении нескольких столетий, которые в истории Западной Европы обычно называются средними веками, или эпохой феодализма, происходили рост ремесленного производства и расширение рынка. В конце XIV в. в Италии появляется новая форма производственного объединения, основанного на ремесленном труде, — мануфактура. На протяжении следующего века мануфактуры распространяются в других странах Европы. Энергетической базой мануфактур продолжают оставаться труд человека, сила животных, вода и ветер, а основной машинной структурой — мельница. Таким образом, главным назначением машин оставалась замена физической силы человека, и лишь на самых элементарных операциях начали применяться прообразы технологических машин.

В середине XV в. турки, сломив сопротивление защитников Константинополя, овладели этим последним оплотом Византийской империи, и бежавшие от завоевателей ученые принесли с собой в Италию рукописи творений греческих писателей и ученых. В конце XV в. Христофор Колумб после длительного путешествия через Атлантический океан увидел землю, позже ее назвали Америкой.

Таковы были те события, которые определили начало эпохи, получившей название Ренессанса, или Возрождения. Интерес к научному наследию древних повысил интерес к науке вообще. Начинается постепенный отход от всеобщего языка науки — латинского к новым языкам. Появляются сочинения по технике, среди них видное место занимают разного рода собрания или «Театры машин», составленные техниками- практиками. «Театры машин» представляют собой описание известных автору машин, иногда собственных его изобретений.

Одним из самых выдающихся изобретателей эпохи Возрождения был Леонардо да Винчи — художник, архитектор, инженер, механик-практик и экспериментатор, хотя многие из его экспериментов были выполнены лишь на бумаге. Правда, его рукописи долгие годы лежали под спудом, и лишь в конце прошлого века началась их публикация, но все же они не остались в стороне от главного пути технического прогресса. У Леонардо было много учеников, знакомых с его идеями и сотрудничавших с ним. А если обратиться к публикациям XVI в. по технике, то сразу станет видно, что многие авторы были знакомы с проектами и идеями Леонардо.

Изобретательский гений Леонардо был подкреплен обширными техническими знаниями. Он как бы сразу, во всех ее составляющих видел будущую машину. Он знал практически все разновидности зубчатых зацеплений, кулачковые, гидравлические и винтовые механизмы, передачи с гибкими звеньями… Он изобрел несколько типов экскаваторов и продумал организацию земляных работ одновременно на нескольких горизонтах. Он изобрел несколько гидравлических машин, в том числе тангенциальную турбину, прядильный и волочильный станки, станок для насечки напильников, приспособления для нарезки винтов, прокатный стан, станок для свивки канатов. Некоторые из его изобретений настолько опередили свое время, что остались недоступными для техники той эпохи. Сюда можно отнести центробежный насос, гидравлический пресс, огнестрельное нарезное оружие.

Вплоть до конца XVIII в. основное назначение машин остается одним и тем же — замена физического труда. Но появляются уже технологические машины, целью которых является замена действия руки человека, и именно развитие этих машин привело к промышленной революции. В XV в. была изобретена рогулька для ручной прялки. В XVII в. получили распространение самопрялки с ножным приводом. Весьма древним по своему происхождению является токарный станок. Он был известен уже около 500 г. до н. э. Со временем он становился совершеннее, росла его производительность, но принцип работы на нем долго оставался неизменным: в станке вращалась заготовка, а резец оставался в руках работника. Но вот в XVI в. Жак Бессон в своем «Театре инструментов» впервые описал станок для нарезки винтов с суппортом. Впоследствии изобретение суппорта повторил в начале XVIII в. русский механик Андрей Нартов, а в конце XVIII в.— английский промышленник Генри Модели.

Агостино Рамелли, один из преемников Леонардо, издал книгу «Различные и искусные машины», которая неоднократно переиздавалась. В этой книге описаны изобретенные им машины — мельницы, водоподъемники и грузоподъемники, насосы, конструкции которых зачастую чрезвычайно сложны. Поражает богатство механизмов: кривошипно-шатунные и кулисные устройства, различные типы червячной передачи, зубчатые зацепления. Есть и установка для одновременного чтения нескольких книг.

Подробно описал машины, применявшиеся в горном деле в XVI в. и ранее, немецкий врач, минералог и металлург Георг Бауэр, известный под латинизированным именем Агрикола. Согласно его сведениям в горнозаводских машинах уже тогда применялось железо для изготовления рам, зубчатых колес, подшипников. Ему уже было известно, как от одного водяного колеса можно привести в действие шесть насосов, несколько толчей. Идея привода нескольких механизмов от одного источника энергии тогда еще не имела значительного распространения и была одной из технических новинок.

Современником Агриколы был выдающийся итальянский врач, математик и механик Джероламо Кардано, имя которого сохранилось в названии известного механизма. Кардано — один из основоположников кинематики механизмов. К вопросу о передаче и преобразовании движения он подходил в определенной степени как теоретик, стремясь глубоко разобрать теорию и практику зубчатых зацеплений. Тем не менее при описании изготовления часов он тут же с грустью заметил, что «часовые механизмы нашего века проводят больше времени у часовщиков, чем у владельцев».

Нужно сказать, что инженеры того времени умели решать разнообразные технические задачи. Они умели сооружать даже сложные установки, прообразы машин автоматического действия. Одну из таких установок построил в середине XVI в. в Соловецком монастыре игумен Филипп (Федор Степанович Колычев), который впоследствии был митрополитом Московским и по приказу Ивана Грозного был задушен Малютой Скуратовым. Сохранилось описание его установки. В нее входили мельницы («мельницы делал да ручьи копал к мельницам, воду проводил к монастырю»), которые мололи зерно, просеивали помол и были еще и крупорушками («доспел севальню, десятью решеты один старец сеет», «доспели решето, само сеет и насыпает и отруби и муку разводит розно, да и крупу само же сеет и насыпает и разводит розно крупу и высейки»), Мало того, установка имела к тому же устройство для приготовления кваса. Раньше этим делом занималась «вся братия и слуги многие из швальни», благодаря же устройству с работой справлялись один инок и пятеро служителей. Обратим внимание, как работало квасоделательное устройство. В нем квас «сам сольется изо всех щанов да вверх подоймут, ино трубою пойдет в монастырь да и в погреб сам льется да и по бочкам разодется сам во всем».

В монастыре были организованы соляной промысел, железоделательное и кирпичное производство. Изобретатель поставил несколько солеварен, соорудил сложную водную систему: «Горы бо великия прокопа и юдолия изборозди, и воду тещи от езера во езеро претвори и двадесятим бопятьдесят езером число и два источника сотвори и под монастырь во езеро привел».

Интересно, что в «Механике гидравлико-пневмати- ческой» немецкого иезуита Каспара Шотта, опубликованной спустя столетие, описана машинная установка для пивоваренного завода, в общем напоминающая соловецкую установку.

В XVI в. были попытки создания и паровой машины, но они не увенчались успехом. Даже на протяжении XVIII в. основным источником энергии для больших установок продолжало оставаться водяное колесо.

Известны были две водяные установки — в Лондоне и в Марли. Третья установка — насосная система Змеиногорского рудника на Алтае — была малоизвестна, хотя с технической точки зрения она превосходила обе первые.

Лондонская насосная установка была построена в последней четверти XVI в. и служила для снабжения города питьевой водой. Через восемь десятилетий, после большого лондонского пожара, она была перестроена. В дальнейшем ее усовершенствовали, и для ее привода были построены четыре водяных колеса по 6 м в диаметре. В 60-х годах XVIII в. знаменитый английский инженер Джон Смитон добавил к установке еще одну секцию, в которую входило колесо диаметром около 10 м с 24 лопатками длиной около 5 м.

Машина в Марли была построена в последней четверти XVII в. голландским инженером Раннекеном. Она поднимала воду из Сены, затем по акведуку вода поступала в водоем, откуда уже шла к фонтанам Версаля. Установка состояла из 14 колес, которые приводили в действие 253 поршневых насоса.

Змеиногорская гидравлическая система, построенная Козьмой Дмитриевичем Фроловым в 80-х годах XVIII в., приводила в движение лесопилку, кузницу, рудоподъемные машины двух шахт, водоотливные, ру- додробительные и рудопромывающие устройства. Два колеса в системе Фролова были поистине огромными: одно диаметром 15,6 м работало на Вознесенской шахте, в подземной камере. Оно приводило в движение сложную трансмиссионную систему к двум рядам насосов. Другое — Екатерининское — колесо имело диаметр даже 17 м и тоже работало в подземной камере.

Естественно, что гидравлические установки обычных мельниц были значительно меньших размеров и имели небольшую мощность. Так, суммарная мощность гидравлических машин Англии к концу XVIII в. составляла примерно столько же, сколько и суммарная мощность людей и животных, занятых в промышленности. Нужно было найти новый источник энергии — универсальный промышленный двигатель, который бы дал возможность строить промышленные предприятия вдали от рек.

В том же веке возникла проблема создания технологических машин, в первую очередь для текстильного производства, где безраздельно господствовал ручной труд. Мануфактуры и отдельные ремесленники не могли справиться с множеством заказов. Нужна была машина, которая заменила бы ручной труд прядильщика. История таких машин началась с 1735 г., когда Джон Уайетт изобрел первую, по сути дела, прядильную машину. Но вот что любопытно и что довольно хорошо характеризует обстановку в промышленности того времени накануне промышленного переворота: эта первая прялка работала в буквальном смысле благодаря… ослу, т. е. источником энергии служил осел.

В 1765 г. появляется прядильная машина периодического действия под названием «Дженни», построенная Джеймсом Харгивсом, в 1767 г. — ватерная машина Ричарда Аркрайта. Дальнейшие изобретения и усовершенствования полностью машинизировали текстильную промышленность, правда, пока только в производстве пряжи. И следствие: если ранее пряжи не хватало, то теперь образовался ее излишек. Изобретение Сэмюэлом Кромптоном «мюль-машины» еще более увеличило эти излишки. Всеми отчетливо осознавалась нужда в ткацком станке, отвечающем времени. И он появился. В 1785 г. деревенский священник Эдмунд Картрайт взял патент на механический ткацкий станок.

Не оставалась в стороне и Россия. Здесь в 1767 г. было 7 хлопчатобумажных мануфактур, а через 20 лет их число увеличилось почти в 35 раз. Более медленными темпами развивалась полотняная, шелковая и суконная промышленность. В 1760 г. хозяин прядильной мануфактуры в Серпейске Калужской губернии Родион Глинков построил 30-веретенную машину для прядения льна с приводом от водяного колеса и мотальную машину, заменившую десять человек, а также другие машины. В течение века в России было создано много металлообрабатывающих станков. В частности, в Туле Яков Батищев построил вододей- ствующую машину для сверления и обдирки ружейных стволов и несколько других машин. На том же Тульском оружейном заводе впервые было налажено производство взаимозаменяемых деталей.

Развитие машин и механизмов во Франции в XVIII в. шло своими путями. Механики здесь занимались построением станков для производства шелковых тканей и автоматов. Особенно прославился в этом отношении Жак де Вокансон. Многие из построенных им автоматов моделировали движения человека и животных. В 1801 г. появился станок с автоматическим приспособлением, которое давало возможность изготавливать ткань из ниток разного цвета со сложным узором. Этот станок был первым, в механизм которого было включено программное управление. Построил его Жозеф Жаккар.

Все изобретения, определившие характер промышленного переворота, работали в условиях старой энергетики —водяного колеса или силы животных. Новым универсальным промышленным двигателем стала паровая машина. Изобретена она была на рубеже XVII и XVIII вв. усилиями многих ученых и изобретателей, но прошло еще почти столетие, пока она не приняла форму, пригодную для применения.

Первая универсальная паровая машина была создана механиком Колывано-Воскресенских заводов Иваном Ивановичем Ползуновым. В апреле 1763 г. он разработал проект паровой машины, пригодной для привода машин. Машина была сооружена в 1765 г., но запустили ее лишь через полгода после смерти изобретателя. Она проработала несколько месяцев и была остановлена «за ненадобностью».

Удалось создать универсальный промышленный двигатель английскому изобретателю Джеймсу Уатту, который подошел к своей задаче, можно сказать, как ученый, начав систематически исследовать свойства водяного пара. Осенью 1763 г. он тщательно ознакомился с моделью машины Томаса Ньюкомена, созданной еще в начале века и служившей в качестве насоса для откачки воды из шахт, и в своей модели учел недостатки этой машины, приводившие к большому перерасходу угля. Кроме того, он придал своей машине универсальность использования.

Таким образом, промышленность получила универсальный двигатель. Следующим, завершающим этапом промышленного переворота стало производство машин при помощи самих же машин. Возникло машиностроение, и инициативу перехватили изобретатели металлообрабатывающего оборудования.

Машины заменяют не только физическую силу человека, но и его умение. В середине прошлого века машины начинают обслуживать едва ли не все области производства. Сперва машины изготавливались по отдельным заказам, затем заводы переходят к серийному производству, хотя в практике остается и индивидуальное производство машин, особенно больших габаритов или с какими-либо специальными параметрами.

Уатт неустанно улучшал свою машину. В 1784 г. он построил паровую машину с центробежным регулятором и с силовой передачей через планетарный механизм. Тем самым он уменьшил вес маховика. Через год паровая машина впервые была поставлена для привода текстильного предприятия. К концу века в Англии и Ирландии работало уже более трехсот машин.

В Германию первая паровая машина было ввезена в 1785 г. Она была установлена на шахте. Во Франции первая паровая машина приступила к работе в 1779 г., а в 1787 г. в Париже братья Перье сконструировали и построили маленькую паровую машину, работавшую в комбинации с тремя водяными колесами, которые она обеспечивала водой. Колесо же приводили в движение токарные станки, молот и станок для сверления бревен.

В России в 1798—1799 гг. паровые машины были установлены на Александровской мануфактуре в Петербурге и на Гумешевском заводе на Урале. В США паровую машину высокого давления, по-видимому, самостоятельно построил в 1784 г. выдающийся изобретатель Оливер Эванс. Он разработал также систему взаимозаменяемости деталей (на 37 лет позже Тульского завода) и сделал попытку автоматизировать технологический процесс — он построил автоматизированную мельницу.

Здесь надо повторить мысль, высказанную веком ранее: в полной мере о машиностроении как о самостоятельной отрасли промышленности эпохи промышленной революции можно говорить, имея в виду конец XVIII в., когда появились машиностроительные заводы. Любопытно, что рост числа изобретений в то время казался современникам настолько быстрым, что высказывались прогностические суждения, согласно которым «еще через 50 лет будут сделаны другие изобретения, в сравнении с которыми паровая и прядильная машины, как они ни удивительны в наших глазах, покажутся изобретениями малозначащими и неважными».
Зарождалась и наука о машинах — машиноведение, если применить современный термин. Истоки ее в тех самых «Театрах машин», которые, как уже говорилось, содержали рисунки и чертежи машин и краткие сведения о них. Пожалуй, самый полный «Театр машин» был создан саксонским механиком Якобом Лейполь- дом. Эта грандиозная работа была издана (с материальной помощью Петра Великого) в девяти фолиантах и сохраняла свою ценность еще и в начале XIX в.
В XVIII в. рассчитызать машины не умели, да и не существовало еще методов расчета. А поскольку машины того времени были тихоходными, их строили по правилам статики. Впервые указал на то, что основное для машин — это движение, живший в России великий математик Леонард Эйлер. Позже французский геометр Гаспар Монж показал, что машина состоит из механизмов, которые он назвал элементарными машинами. В 1808 г. инженер Августин Бетанкур и математик Хосе-Мария Ланц написали первый учебник по курсу построения машин, в котором развили идеи предшественников. А в 1841 г. английский ученый Роберт Виллис определил понятие механизма.

Итак, оказалось, что машины состоят из механизмов. В первом учебнике по механике были учтены пока только 134 различных механизма, хотя число их на начало XIX в. было больше, но не превышало 200, из которых около половины было изобретено в XVIII в. Для сравнения укажем, что Иван Иванович Артоболевский в своем знаменитом справочнике «Механизмы в современной технике», получившем поистине мировое распространение, учел на конец третьей четверти XX в. 4746 механизмов. Получается, что за 170 лет (с 1800 по 1970 г.) количество механизмов возросло почти в 24 раза, в то время как с XVII по XIX в. оно всего лишь удвоилось.

Исключительную роль в механике машин сыграл основной механизм паровой машины — кривошипно- шатунный механизм, служащий для преобразования возвратно-поступательного движения поршня во вращательное. Этот механизм, без которого невозможен современный тракторный или автомобильный мотор, появился давно. Он ведет свою родословную от некогда придуманной ручки ворота. Но что любопытно: в первых паровых машинах не было кривошипно-шатун- ного механизма потому, что он охранялся патентом. Поэтому пришлось дополнительно изобрести несколько механизмов для нужного преобразования. Среди них были планетарный механизм и так называемый параллелограмм Уатта, позже сыгравший существенную роль не только в механике, но и в математике.
Становление машиностроения стимулировало работу изобретателей над проблемой передачи энергии от паровой машины и распределением ее между станками. Появляются ступенчатые шкивы и гибкие бесконечные ленты, заполнившие цехи заводов прошлого столетия.

Еще в конце XVIII в. новое значение получили слово «промышленность» и его эквиваленты в европейских языках. На Руси XVII в. «промышленник» был связующим звеном между охотником и купцом, не всегда добропорядочным, а поэтому и термин имел несколько зазорный оттенок. Промышленник начала XIX в., конечно, не уходит далеко от своего предка эпохи первоначального накопления по части морали и нравственности, но вес буржуазии в обществе растет безудержно.

Промышленный переворот сопровождался разорением ремесленников, которые не могли конкурировать с крупным производством и пополняли резервную армию труда. Не понимая истинных причин происходящего, они обращали свой гнев не против капиталистов, а против машин, считая их ответственными за свою судьбу. Массовое разрушение машин в английских мануфактурных округах в течение первых 15 лет XIX в. было направлено в особенности против парового ткацкого станка. По словам Карла Маркса, потребовались известное время и опыт для того, чтобы рабочий научился отличать машину от ее капиталистического применения и вместе с тем переносить свои атаки с материальных средств производства на общественную форму их эксплуатации.

Паровая машина не только удовлетворила настоятельную потребность в универсальном двигателе, но и дала возможность создать механический транспорт. Первый локомотив, который можно было приспособить для транспортировки угля, построил в 1814 г. Джордж Стефенсон. Мощность машины была невысока, и потребовались годы для создания ее универсального транспортного варианта. Изобретатель оборудовал небольшой завод, на котором построил три локомотива для Стоктон-Дарлингтонской железной дороги. Эти локомотивы были маломощными, не могли развивать больших скоростей, но были пригодны, чтобы возить товарные составы. Пассажиров по-прежнему перевозили конные упряжки. Но Стефенсону удалось создать вместе со своим сыном Робертом новый паровоз «Ракету», который и обеспечил нужную скорость движения. В сентябре 1810 г. была открыта первая в мире сорокакилометровая пассажирская линия Ливерпуль— Манчестер (за одно десятилетие в Англии было построено уже около трех тысяч километров железных дорог.)

Через два года были построены две железные дороги во Франции: Париж — Версаль и Париж — Сен- Жермен. Еще через три года появились они и в Германии. Первой была сооружена дорога Нюрнберг — Фюрт, а через два-три года Лейпциг — Дрезден, Берлин — Потсдам. Не прошло и полувека, как вся Европа покрылась густой сетью железных дорог.

Через пять лет после открытия первой пассажирской линии в Англии в России также появилась первая железная дорога. Это была дорога от Петербурга до Павловска, построенная под руководством чешского инженера Франтишека Герстнера. В следующем десятилетии была построена дорога Варшава—Вена. И началось сооружение дороги Петербург — Москва протяженностью около 650 км, завершенное в 1851 г. После этого русская железнодорожная сеть расширялась быстрыми темпами.

Железнодорожное строительство сыграло важную роль и в развитии машиностроения. Возможность получения больших заказов на локомотивы, подвижной состав и различное машинное оборудование стимулировали развитие старых и постройку новых машиностроительных заводов. Для этих производств было создано специальное станочное и иное оборудование.

Одновременно происходило становление механизированного водного транспорта. Задачу создания судна с паровой машиной успешно решил американский инженер Роберт Фултон. Свое судно «Катарина Клер- монт» он снабдил паровой машиной. Судно имело 42,6 м длины при 14,6 м ширины, диаметр колес равнялся 4,6 м. Топливом служили сосновые дрова. Успех Фултона послужил сигналом к развитию пароходостроения. Сам он построил еще 15 пароходов, в том числе первое паровое военное судно «Демологос».

В 1818 г. первый пароход пересек Атлантический океан, это была «Саванна», имевшая длину 30,5 м при ширине 7,9 м. Первый рейс до Ливерпуля был совершен за 26 дней, из которых 8 дней судно шло только под парусами.

Через 18 лет англичанин Смит применил вместо гребного колеса деревянный винт, длина которого равнялась двум шагам нарезки. Скорость парохода возросла. Правда, во время испытаний винт сломался. После этого изобретатель установил длину винта, равную одному шагу.

Первый пароход в России построил в 1815 г. петербургский заводчик Берд, он установил на нем уат- товский балансирный двигатель. Труба от парового котла была выложена из кирпича. Этот пароход, «Пироскаф», нес два гребных колеса по 2,4 м диаметром, имевшим по шесть лопастей. Путь от Петрограда до Кронштадта пароход проходил за 2 ч 45 мин. В следующем году начали строить пароходы на Ижорском заводе. Для военного флота в 1829 г. было построено 12 небольших пароходов.

Паровая машина в России получила и иное применение: для очистки Кронштадтского порта Августин Бетанкур запроектировал землечерпалку-экскаватор непрерывного действия. Машину построили на Ижорском заводе.

К концу первой четверти века пароходы появляются на реках России. В 1817 г. сначала на Каме были спущены на воду два небольших паровых судна, а вскоре пароходы стали ходить по Волге. Через шесть лет пошел первый пароход по Днепру, а еще через четыре года первое паровое судно было приписано.к торговому порту Одессы.

Промышленный переворот, который начался в Англии, продолжался в других странах. С известной долей приближения можно считать, что в России он завершился лишь в третьей четверти века, после отмены крепостного права, обеспечившего пополнение резервной армии труда.

Уже с начала прошлого века машины появляются во всех областях хозяйства. В сельском хозяйстве машины применялись и раньше, но лишь на тяжелых работах. В 1833 г. в США кузнец Джон Дир сконструировал цельнометаллический плуг, который быстро распространился по свету. В середине века в Англии был создан первый паровой плуг. В России плуг усовершенствовали в конце XVIII в., но материалом для его изготовления продолжало оставаться дерево. Только в 50-х годах инженер Э. П. Шуман сделал так называемый южнороссийский цельнометаллический плуг с широким полувинтовым отвалом.

В 1822 г. англичанин Г. Огль построил жатвенную машину, в которой использовал принцип ножниц. В 1826 г. П. Белл изобрел машину, пригодную для уборки урожая. Оригинальные конструкции жаток были созданы также в России. В середине прошлого века одновременно в Европе и США появились сеялки, сначала конные, а потом и паровые.

Значительно раньше появилась молотилка; еще в последней четверти XVIII в. шотландцы отец и сын Майкл построили молотилку, рабочим органом которой был барабан с билами. Эта система получила широкое распространение. В 1840 г. Тернер в США предложил иную систему, в которой зерно не выбивалось, а вычесывалось.

В России молотилки этой системы появились в середине века, хотя в основном применялись молотилки английской системы. Лишь в конце столетия в России и Западной Европе так называемая американская система получает преимущество. Молотилки, применявшиеся в небольших хозяйствах, имели ручной привод. Более крупные установки приводились в движение лошадьми. Изредка применялись и локомобили. Первый локомобиль построил американский изобретатель Оливер Эванс в 1805 г. В 30—40-х годах английские и французские заводы начали выпускать локомобили для привода сельскохозяйственных машин и для других целей. Сельскохозяйственные машины стали одной из первых групп технологических машин, в которых существенной частью были пространственные механизмы.
Нужно отметить, что наука о машинах развивалась в основном как описательная. Машины, как и раньше, строились по подобию, по образцам. Рассчитывались лишь некоторые параметры — размеры зубчатых колес, маховика, передаточные отношения, коэффициенты полезного действия, мощность двигателя. Но, конечно, одним копированием существующего, кем-то созданного дело не ограничивалось. Каждый изобретатель непременно вносил что-то свое, новое, что и вело к развитию машинных форм, ко все большему разнообразию механизмов, а в целом к становлению технологического машиностроения в последней четверти прошлого века.

В дальнейшем было создано большое количество разнообразного металлообрабатывающего обрудова- ния — токарных, токарно-винторезных, строгательных и зуборезных станков. В 1829 г. Джеймс Несмит улучшил конструкцию фрезерного станка, и он стал одним из главных по тому времени станков. В 1843 г. Несмит же создал паровой молот. Это был крупный шаг в механизации кузнечного производства, развитии куз- нечно-прессового оборудования.

Машинизация на новой технологической основе захватывает и горнодобывающую промышленность. Было изобретено несколько видов машин для прохождения глубоких скважин, созданы установки для канатного бурения. В середине века в шахтах и на рудниках появились перфораторы для бурения шпуров, хотя первый американский паровой перфоратор оказался тяжелым и неудобным в работе. Тогда попробовали заменить пар сжатым воздухом. Во Франции сконструирован первый пневматический перфоратор, и во второй половине века пневматическое бурение применили при проходке железнодорожных туннелей.

Еще в конце XVIII в. начались работы по созданию машины, которая облегчила бы тяжелый труд шахтера. В следующем столетии уже существовало несколько систем врубовых машин; так, в Англии в 70-х годах применялась врубовая машина, действовавшая сжатым воздухом. Однако и к концу прошлого века механизация подземных работ была чрезвычайно пиз- кой. Объясняется это дешевизной ручного труда, невысокими темпами развития горной промышленности, а также косностью, боязнью новизны. Аналогичным было положение и в других областях производства. К машинам относились с опаской: стоят они много, а сможет ли окупиться затраченный капитал, не ясно. Во время постройки железной дороги Петербург — Москва строитель дороги, автор первого русского теоретического труда по железнодорожному делу Павел Петрович Мельников приобрел в США новинку — четыре паровых экскаватора. Однако подрядчики отказались пользоваться экскаваторами, и их продали на Урал. Первый многоковшовый экскаватор на железнодорожном ходу был построен французским инженером Кувре в 1864 г. и использовался на земляных работах при проходке Суэцкого канала. При этом для отгрузки грунта были установлены цепные транспортеры. Ленточный транспортер появился в середине века, его построил на приисках Восточной Сибири инженер А. Лопатин. Транспортер применялся для выдачи золотоносного песка к машинам и промытого — в отвал.

Пример экскаватора, транспортера и некоторых других машин показал, что машины, изобретенные для технологических нужд одной отрасли промышленности, могли с успехом применяться и в другой. В данном случае речь шла о горнозаводском, строительном и дорожном производствах. Таким образом, происходит непрерывный обмен идеями и оборудованием. В этом проявлялись интегральные тенденции техники, обеспечивающие нужное решение на «стыке» различных ее направлений.

Проникновение машин в полиграфию, в пищевую, легкую, табачную промышленность и в некоторые другие отрасли производства существенно обогатило теоретическое и практическое машиностроение: для создания специальных машин потребовались новые механизмы с новыми свойствами. В этих машинах уже проявилась тенденция автоматизации производства.

Обобщая ход развития техники от простых орудий труда к автоматизации производства, Карл Маркс писал о том, что ход развития машин шел от простых орудий, накопления орудий, сложных орудий, приведения в действие сложного орудия одним двигателем — руками человека, приведения этих инструментов в действие силами природы; к машине; системе машин, имеющей один двигатель, наконец, к системе машин, имеющей автоматически действующий двигатель.
Нарисованная картина — это точный «слепок» с действительности, с практики, в которой «рабочая часть» машин сыграла первостепенную роль, будучи стимулом развития как самой машины, так и системы машин.

Позже Фридрих Энгельс дал еще более развернутую характеристику эволюции машинного производства. По его словам, в крупной промышленности применяются двоякого рода машины: 1) кооперация однородных машин (механический ткацкий станок, машины для изготовления конвертов, которые исполняют работу целого ряда частичных рабочих путем комбинирования различных орудий), здесь уже имеется технологическое единство благодаря передаточному механизму и двигателю, 2) система машин, комбинация частичных рабочих машин (прядение). Последняя находит свою естественную основу в мануфактурном разделении труда, но имеет существенное различие. В мануфактурном производстве каждый частичный процесс необходимо было приспосабливать к рабочему, а здесь же количественное отношение отдельных групп рабочих повторяется в виде отношения отдельных групп машин.

И в этих классических высказываниях содержится не только итог пройденного техникой пути, но и прогноз, подтверждение которому — современное автоматизированное производство, широкое включение в него автоматов и роботов. Как считал Энгельс, самой совершенной формой фабрики «является автомат, производящий машины, автомат, который уничтожил ремесленную и мануфактурную основу крупной промышленности и тем самым впервые придал законченную форму машинному производству…»

Присмотримся к Марксову определению машины. В нем, как мы видим, есть указание на то, что всякая развитая машина (или система машин) состоит из трех составных частей — двигателя, передачи и орудия. С этим были согласны все машиноведы, и на протяжении ста с лишним лет они выделяли в классе машин три подкласса — машины-двигатели, машины- передатчики и машины-орудия.

В течение почти всего прошлого века паровая машина была основным универсальным промышленным и транспортным двигателем. Однако коэффициент полезного действия паровой машины был небольшим, повысить его не удавалось, и поэтому творческая мысль ученых и изобретателей неизбежно должна была устремиться на поиски иных машин-двигателей.

Постепенно четко обозначились три основных направления поисков.

Первое направление. Здесь ученые и изобретатели пошли путем разработки способа непосредственного преобразования энергии топлива в механическую энергию вращающегося кривошипа, минуя промежуточное превращение воды в пар, поскольку оно приводило к большим потерям энергии. Это направление привело к созданию двигателя внутреннего сгорания, включая двигатель типа дизеля.

Второе направление — непосредственное получение вращательного движения с помощью улучшения древнейшего принципа машины, заложенного в водяном колесе. Здесь результат поисков — сначала водяная турбина, затем турбины, в которых рабочим телом стал пар, а уже в XX в. — газ.

Поиски в третьем направлении были самыми сложными. Заключались они в освоении нового вида энергии — электрической, в использовании ее для получения механической работы. Проблема создания электрического двигателя была связана с другой не менее важной проблемой — передачей электроэнергии на расстояние. Сперва были созданы генераторы постоянного тока, затем освоен и переменный ток.

Развитие машин с середины прошлого века идет все время убыстряющимися темпами. Машины улучшаются, появляются новые типы. Механизация проникает во все новые и новые области хозяйства, и машиностроительное производство занимает в последнем все более важное место. Вследствие повышения спроса на отдельные модели машин заводы от индивидуального изготовления переходят к их серийному выпуску, а затем и к массовому производству. Важное значение приобретает стандартизация и нормализация деталей, узлов и целых агрегатов. Требования улучшения конструкций машин, облегчения их эксплуатации и ремонта, снижения веса и увеличения рабочих скоростей, требования надежности и долговечности, безопасности в работе (иногда нелогичные и не связанные с названием машины требования ее эстетики и оформления) — все это, а также многое другое, зачастую взаимно противоречивое, тревожило конструкторскую мысль. Большие скорости, развиваемые двигателями, заставили обратить внимание на силы инерции и ввести их в расчеты. Личное авторство создателей машин и механизмов нивелируется, и уже не всегда можно с определенностью выяснить, кому, собственно, принадлежит то или иное изобретение, поскольку машины, усовершенствованные на каком-либо предприятии, становятся собственностью этого предприятия.

На протяжении почти всего столетия за счет патента на паровую машину монополия сухопутного транспорта принадлежала железным дорогам. К концу столетия появляются самодвижущиеся экипажи, а в самом начале нашего столетия человек поднимается ввысь на аппаратах тяжелее воздуха. Тем самым открываются новые страницы истории машин.

В 1879 г. механик К- Бенц изобрел двухактный двигатель. После ряда усовершенствований через шесть лет ему удалось добиться того, что двигатель смог приводить в движение экипаж. Первый автомобиль Бенца был трехколесным, он развивал максимальную скорость — 16 км/ч.

В те же годы Готлиб Даймлер построил мотоцикл, на котором установил малогабаритный двигатель собственной конструкции. Колеса мотоцикла он изготовил из дерева, шины были железными, как в хорошей крестьянской телеге. Рама тоже была деревянной, и на ней закреплено было кожаное седло. По сторонам деревянных подножек для устойчивости устанавливались два маленьких колеса. Изобретатель установил свой двигатель на обычной извозчичьей пролетке и достиг на ней скорости 12 км/ч. В 1889 г. ему удалось разработать конструкцию двухцилиндрового двигателя: оба цилиндра он установил под углом 20° друг к другу. Затем был построен автомобиль. Его стальные колеса, похожие на велосипедные, были одеты в резиновые шины. Мотор разместился сзади, под сиденьем. В том же году Даймлер показал свой автомобиль на Парижской всемирной выставке, и несколько французских фирм купили у него лицензии на производство автомобилей. Так возникла еще одна отрасль машиностроения — автомобилестроение.

В 1892 г. свой первый автомобиль построил американский механик Генри Форд. В начале века он организовал в Детройте крупный концерн по производству автомобилей и стал одним из создателей американской автомобильной промышленности.

С некоторым отставанием от автомобиля был создан летательный аппарат тяжелее воздуха — аэроплан. Произошло это в 90-е годах XIX в. В вышедшем в то время Энциклопедическом словаре Брокгауза и Эфрона слово «аэроплан» поясняется так: «воздушный змей, употребляемый для метеорологических наблюдений». А через десять лет это слово стало знакомым жителям больших городов. С ним связывались занимательные полеты на сложных конструкциях из бамбуковых шестов и веревок. Полеты часто заканчивались тем, что это нескладное сооружение ломалось и авиатор падал с небольшой высоты на землю. Хуже было, если высота оказывалась значительной. К счастью, такое случалось редко.

Одним из первых конструкторов аэропланов был русский контр-адмирал Александр Федорович Можайский. Он построил свой «воздухоплавательный снаряд» и в 1882—1885 гг. провел ряд опытов. К сожалению, аппарат не взлетел.

В 1898 г. построил аэроплан американец Хайрем Максим, известный изобретатель станкового пулемета, поднялся на нем в воздух, однако сразу же потерял устойчивость и упал.

В 1903 г. в воздух поднялись американские изобретатели братья Уильбер и Орвилл Райт. На аэроплане собственной конструкции они установили четырехцилиндровый двигатель, который с помощью цепной передачи приводил в движение два пропеллера. За 12 с самолет пролетел 53 м. Затем полеты начали осуществляться во многих странах, в том числе и в России.

В 1909 г. француз Луи Блерио на аэроплане собственной конструкции перелетел через Ла Манш.

Полеты из мечты превратились в действительность. Большой вклад в создание авиационной техники принадлежал замечательному русскому ученому — отцу русской авиации Николаю Егоровичу Жуковскому. В 1911 г. он приступил к исследованиям по отысканию наилучшего профиля крыла аэроплана, которые явились основополагающими при создании высокоскоростной авиации. Так возникает еще одна отрасль ма- шинострения — авиастроение.

Развитие новых отраслей промышленности обусловили рост станкостроительной промышленности и создание электроэнергетики. Уже в начале нового века появляются наряду с универсальными специализированные станки. Первенство в этом отношении от Англии и Германии перешло к Америке. Значительное развитие получило прессовое оборудование, приводимое в работу паром и пневматикой. Быстро разрабатывается оборудование легкой и пищевой промышленности, совершенствуется полиграфическое оборудование. Все чаще конструкторы уже не могут пользоваться известными им механизмами, и им приходится изобретать новые. Все большее значение приобретает электропривод. Повсеместно возникают специальные фабрики по производству электроэнергии — тепловые и гидравлические электростанции.

В России, которая по производству электроэнергии занимала перед первой мировой войной пятнадцатое место в мире, электростанции были маломощными и обслуживали небольшое число потребителей. Самой большой электростанцией была подмосковная «Электропередача», работавшая на буром угле. Здесь работали два турбогенератора.

Развитие энергетического машиностроения влияло и на другие отрасли народного хозяйства. Высокие скорости, большие давления, высокие температуры, высокая прочность и ряд других характеристик новых машин потребовали и новых конструкционных материалов. Развитие самолетостроения выдвинуло дополнительные требования максимального снижения веса всех элементов самолета при сответственном повышении прочности. Все это стимулировало развитие металлургии и металлургического машиностроения.

Таким образом, процесс машинизации более или менее быстро охватил самые различные области промышленности. Но степень ее была неодинаковой. Наиболее низкой она оказалась на тяжелых и трудоемких работах в горной промышленности, на строительных и дорожных работах, на погрузочно-разгрузочных работах, на транспорте, включая внутризаводской транспорт, на строительстве железнодорожных путей и искусственных сооружений.

Первая мировая война переключила машиностроительные заводы на производство оружия. Возникают новые военно-транспортные средства, артиллерийские системы, создаются механизмы для производства артиллерийских расчетов. Были изобретены бронеавтомобили, а в 1916 г. в бою на реке Сомме англичане впервые применили танки. Были сконструированы военные самолеты, и к концу войны воюющие стороны уже обладали значительными авиапарками. В качестве бомбардировщиков дальнего действия немцы применили управляемые цельнометаллические дирижабли, названные по имени их изобретателя Фердинанда Цеппелина.

Так, машины прочно входили в жизнь людей. Человек мог о них ничего не знать, жить в далекой провинциальной глуши, никогда не видеть никакой машины, за исключением, быть может, мельницы, и все же он жил в машинном веке: какая-то часть его одежды, инструментов, бытовых вещей была сделана при помощи машин. Что же говорить о жителях больших городов, встречавшихся (или имевших дело) с машинами на каждом шагу, поскольку все их имущество состояло из вещей машинного производства, за исключением разве что нескольких предметов, о которых хозяева с гордостью говорили, что они ручной работы.

Важное значение для развития машиностроения приобрело развитие наук о машинах, т. е. создание технических наук. Так, в начале века Василий Прохорович Горячкин, ученик Жуковского, начал разрабатывать «земледельческую механику» — учение о сельскохозяйственных машинах. Чтобы машиностроители придавали оптимальную форму лемеху плуга, он на основе специальных исследований предложил теорию резания грунта, которая быстро перешагнула рамки сельскохозяйственного производства и стала необходимой наукой для создания экскаваторов и иной землеройной техники. Возникает теория резания металлов, и построение станков получает научную основу. Однако все это были лишь частные разработки, а общей теории создано не было.

А между тем машиностроение уже перешагнуло ту ступень, когда конструкторы могли копировать существующие удачные образцы или назначать размеры, сообразуясь лишь с интуицией или «здравым смыслом». Уже первая мировая война показала, что при построении машин могут возникать проблемы, которые надо решать быстро и точно. Восстановление народного хозяйства в нашей стране после мировой, а затем гражданской войн потребовало напряжения всех сил народа. Прилив новых молодых сил вызвал подъем творчества в области точных наук.

И все же и у нас, и во всем мире до середины века машины принципиально не отличались от тех, которые строились в конце прошлого — начале нынешнего века. Менялась их форма, закруглялись углы, все опасные зоны закрывались кожухами, которые, слившись, превращались в «одежду» для машины, придавали ей новую, более «красивую» форму. Из цехов исчезала паутина трансмиссий, и их функции стали выполнять электродвигатели. Но машина продолжала оставаться механизмом или сочетанием механизмов, осуществляющим заданные целесообразные движения для производства или преобразования энергии или выполнения механической работы.

Старейшим из производств транспортного машиностроения было локомотивостроение. В дореволюционной России паровозы строились на Луганском и Харьковском паровозостроительных заводах. В 20-х годах оба эти завода вместе строили в год не более ста паровозов, но их выпуск начал быстро увеличь ваться. В 1924 г. советский инженер Яков Модестович Гаккель спроектировал и построил первый в мире магистральный тепловоз, а в 1933 г. Коломенский завод приступил к его серийному изготовлению. Однако на железных дорогах до 40-х годов тепловозы почти не применялись. Первый советский магистральный электровоз был построен в 1932 г.

В дореволюционной России практически не существовало автомобиле- и тракторостроение. Попытка поставить производство автомобилей в Риге на Русско- Балтийском заводе погоды не сделала. В течение 1907—1915 гг. завод выпустил только 451 автомобиль.

В 1923 г. в Петрограде началось изготовление тракторов «Фордзон-Путиловец», а через год завод АМО в Москве выпустил первые десять полуторатонных грузовиков. Первенцы, отечественного автотракторостроения проехали 1 мая 1924 г. по Красной площади.

Одновременно шла и «стандартизация» структуры обеих машин — автомобиля и трактора. Тогда же разрабатываются оба варианта ходовой части трактора — колеса и гусеницы, принцип которых заимствован был у танка.

В начале 30-х годов вступили в строй два больших автозавода — в Москве на базе завода АМО и в Нижнем Новгороде (г. Горький). Горьковский завод выпускал сперва полуторатонные грузовики и легковые машины, а Московский завод — трехтонные грузовики. Тогда же было освоено производство колесных тракторов на двух заводах, первенцах первой пятилетки — Сталинградском и Харьковском. Вскоре выяснилось, что колесный трактор имеет в условиях нашей страны недостаточную проходимость, в связи с чем оба завода начали изготовлять более мощный трактор на гусеничном ходу.

Существенные изменения произошли и за рубежом. Так, завод «Мерседес—Бенц» (Германия) начал устанавливать на своих легковых автомобилях вместо карбюраторных двигателей дизельные. Меняются также конструкция автомашин и их внешний вид: во второй половине 30-х годов сглаживается «угловатость» легковых автомашин, и они становятся более обтекаемыми. Учитывая, что автомашины вписываются в городской пейзаж и становятся его неотъемлемой частью, их окрашивают в яркие светлые тона. Представление об обтекаемости транспортных машин пришло в автомобилестроение из авиации, где ее изучение было обусловлено требованиями аэродинамики.

Авиация в нашей стране быстро достигла по всем показателям огромных успехов. Скорость самолетов- истребителей возросла до 650 км/ч, а их «потолок» поднялся до 10 км. Самолеты 20-х и начала 30-х годов были преимущественно бипланами, т. е. имели две несущие плоскости, к концу 30-х годов стали строить в основном монопланы, что и дало возможность повысить летные качества самолетов, прежде всего скорость полета.

В 1923 г. под руководством советского авиаконструктора Константина Александровича Калинина в Харькове был построен первый отечественный пассажирский самолет К-1. Это был моноплан, имевший звездообразный двигатель с водяным охлаждением. В 1933 г. им же был построен один из самых больших для того времени самолет К-7 на 120 пассажиров. Он имел семь двигателей. В 30-х годах было создано мощное семейство самолетов АНТ, построенных под руководством крупнейшего авиаконструктора Андрея Николаевича Туполева, ученика Н. Е. Жуковского. На самолете АНТ-25 был впервые осуществлен беспосадочный перелет Москва — Северный полюс — Ванкувер (США).

В середине 20-х годов под руководством Аркадия Дмитриевича Швецова был создан первый советский авиационный двигатель с воздушным охлаждением. Это значительно облегчило дальнейшее развитие авиации.

Вернемся на землю. Сельское хозяйство в 20-х годах повсеместно начинает механизироваться. Увеличивается число тракторов, появляются машины новых типов. К этому времени в США и Канаде были изобретены машины, в которых были совмещены функции жатки-косилки и молотилки. Эти машины, названные комбайнами, были испытаны в нашей стране. С начала 30-х годов Запорожский завод «Коммунар» приступил к выпуску комбайнов своей конструкции. Тогда женв строй вошли Саратовский завод комбайнов и Ростовский завод сельскохозяйственных машин, на котором было начато производство зерноуборочных комбайнов. Заметим, кстати, что на заводе «Коммунар» еще в 20-х годах впервые в практике советского машиностроения была применена конвейерная система сборки машин (тогда завод выпускал жатки-лобогрейки).

Проводилась механизация и других сельскохозяйственных работ. Появились канавокопатели, машины для уборки овощей. В конце 30-х годов в США попытались создать свеклоуборочные комбайны. Первый патент на машину для уборки хлопка был выдан в США еще в 1850 г., но дело оказалось настолько трудным, что даже в конце 30-х годов хлопок практически повсеместно убирался вручную.

Быстрый рост машиностроения поставил новые задачи перед металлургией: советские заводы начали осваивать производство тяжелой металлургической техники. Быстрыми темпами закончилась реконструкция Старокраматорского машиностроительного завода, вступила в строй первая очередь Новокраматорского завода. В 30-х годах на этом заводе для «Запо- рожстали» был построен мощный обжимной двухвалковый прокатный стан, предназначенный для проката слябов. Одной из самых больших современных машин является блюминг — мощный обжимной прокатный стан, на котором можно прокатывать слитки весом до 20 т. Первый советский блюминг, изготовленный на Ижорском заводе, начал работать на Макеевском металлургическом заводе.

30-е годы — это время резкого скачка в развитии кузнечно-прессового оборудования, без которого было бы невозможным массовое производство машин. Одно из ценнейших достоинств этого оборудования — существенная экономия труда и металла: детали, изготовленные на прессах, почти не требуют дополнительной станочной обработки. Строительство мощных прессов началось в Германии и США в конце 20-х годов. В нашей стране в годы первых пятилеток удельный вес прессов и механических молотов отечественного производства значительно возрос. Был освоен выпуск паровых молотов с весом падающих частей 1—3 т, эксцентриковых прессов с усилием до 500 т и кривошипных прессов до 900 т, а также ножниц для резки металла, горизонтально-ковочных машин.

Естественно, что для приведения в действие таких мощных машин необходима была соответствующая энергетическая база. Основной энергетической машиной стала турбина. Габариты турбин и их мощность непрерывно росли. Так, еще в 30-е годы на Ленинградском металлическом заводе была построена турбина мощностью 100 МВт.

Но каким бы крупномасштабным и быстрым ни была машинизация производства, до полного вытеснения трудоемких и тяжелых работ, выполняемых вручную, было еще очень и очень далеко. Особенно это относилось к рудной и угледобывающей промышленности, строительству, металлургии, машиностроению. Проблема эта с каждым годом становилась все острее. Необходимо было обеспечить производство безотказно действующим, надежным и безопасным механизированным инструментом. К той же проблеме примыкала и задача создания внутризаводского и внутрипостроечного транспорта. В горнозаводском производстве, кроме того, надо было механизировать и основные технологические процессы.

Механизация в горном деле быстро развивалась в годы первой и второй пятилеток. Был налажен выпуск врубовых и навалочных машин, конвейеров, шахтных лебедок и насосов, буровых машин. Создание врубовых машин и на их основе угольных комбайнов было дальнейшим шагом вперед. Практически к 40-м годам советская угледобывающая промышленность по степени механизации заняла первое место в мире.

Подобно горной технике, производство строительных и дорожных машин в значительной степени было поставлено в годы первых пятилеток. Отечественные заводы освоили производство бетономешалок, растворомешалок и приступили к серийному выпуску экскаваторов.

В конце первой пятилетки на строительстве появились ленточные транспортеры, сперва импортные, а затем и отечественного производства. На ряде заводов осваивалось производство пневматических компрессоров, что позволило повысить уровень механизации трудоемких работ и обеспечило их безопасность. Был создан также электромеханический инструмент, при помощи которого были механизированы многие трудоемкие работы на строительстве и в машиностроении.
Началась механизация тяжелых и трудоемких работ также на транспорте. Появляются путеукладчики и балластировочные машины, осваиваются и внедряются различные механизмы.

Структура машин и механизмов в 30—40-е годы претерпевает некоторые изменения: в качестве структурных элементов в их состав, кроме жестких и гибких элементов, начинают входить жидкие, газообразные, электромагнитные, а затем и электронные элементы.

Вычислительные машины — прообраз искусственного мозга. Вторая мировая война внесла значительные коррективы в развитие машиностроения. Инженерная мысль работала в основном в направлении совершенствования средств ведения войны, но вместе с тем развивались и такие направления машинной техники, которая могла с неменьшим успехом работать на мирном поприще.

Известный американский математик Норберт Винер, которого принято считать одним из создателей кибернетики, писал о том, что в начале войны первейшей задачей было спасти города от сокрушительных атак с воздуха, поэтому зенитная артиллерия была одним из первых объектов научных исследований, особенно когда артиллерия была соединена с засекающим аэроплан устройством — радаром. Радарная техника, помимо изобретения новых своих собственных форм, использовала те же формы, что и уже существовавшая радиотехника. Кроме обнаружения самолетов при помощи радара, было необходимо сбивать их. Это выдвинуло задачу управления огнем. Большие скорости вызывали необходимость вычисления элементов траектории зенитных снарядов машиной и придания самой машине определяющей упреждение цели, коммуникативных функций, которые прежде выполнялись людьми.

В результате к концу войны в США уже были созданы первые модели электронно-вычислительных машин, а через несколько лет машины такого типа появились и в нашей стране. Тем самым была решена одна из важнейших задач современной техники, позволившая непосредственно перейти к решению сложных проблем автоматизации технологических процессов, производства и управления и сооружения машин нового типа, характерных для современной научно-технической революции.

Таким образом, машины начали овладевать еще одной функцией, свойственной человеку: они начали выполнять некоторые логические операции. За короткое время эти машины претерпели существенные изменения — они уменьшились в размерах, во много раз выросла скорость вычислительных операций и т. д. Электронные вычислительные машины могут управлять производственным процессом, экономикой предприятия, решать сложные математические задачи, рассчитывать полет самолетов и космических кораблей — словом, с огромной скоростью решать такие задачи, на которые множеству вычислителей понадобилось бы потратить годы, и даже такие задачи, которые вообще лежат вне пределов возможностей человека из-за чрезвычайной длительности и сложности расчетов.
Но и этим не ограничиваются возможности ЭВМ: они вводятся в структуру машин, приборов, технологических установок, чтобы на них и здесь возложить управленческие функции. Таким образом, ЭВМ иногда полностью, иногда частично взяли и здесь на себя то, что испокон веков было обязанностью человека- работника.

В 70-х годах в нашей стране была построена машина для диагностики врожденных пороков сердца. Она работала по методу сопоставления того, что заложено было создателями в ее память, с данными, полученными при обследовании больного. С этой машины началось внедрение ЭВМ в медицинскую практику.
Овладение быстродействующими вычислительными машинами, внедрение их в жизнь, науку и производстве, создание совершенно новых классов машин, заменяющих некоторые психофизиологические функции человека, являются одними из составляющих глубокого революционного процесса, охватившего весь мир и называемого научно-технической революцией. Эта революция характеризуется прежде всего такими особенностями, как автоматизация производства, развитие новых направлений в энергетике (строительство атомных электростанций), выход в космическое пространство, создание новых конструкционных материалов с наперед заданными свойствами, становление генной инженерии, бионики, информатики, повсеместное внедрение ЭВМ, превращение науки в производительную силу. Едва ли не все эти особенности тесно связаны с машиностроением, и роль последнего как ведущего направления в развитии народного хозяйства постоянно возрастает.

Мы видели, что машины эволюционируют, приобретают новые свойства. Однако этот процесс не только эволюционный. Он сплошь да рядом сопровождается изменениями революционного характера. Взять, к примеру, транспорт. Паровозы, безраздельно господствовавшие на протяжении полутора веков, освободили место тепловозам и электровозам. То же самое произошло и с паровыми двигателями, которые уступили место двигателям внутреннего сгорания. Затем возникли дизели, турбины, турбореактивные, реактивные и ракетные двигатели.

В послевоенные годы значительные изменения произошли в авиации: поршневые двигатели уступили место реактивным, что дало возможность поднять параллельную высоту полета («потолок») до 35 км, скорость полета — до 2500 км/ч. Естественно, что при этом менялся не только двигатель, но и весь самолет, этого требовали законы аэродинамики, условия повышения безопасности полетов, соображения экономики и т. д. Наряду с реактивными и турбореактивными двигателями стали использовать и турбовинтовые, высокоэкономичные и надежные, обеспечивающие высокую скорость и значительную дальность полета. В 50-х годах был создан первый турбовинтовой двигатель, занявший одно из ведущих мест в гражданской авиации.

Тогда же начался серийный выпуск турбореактивного лайнера Ту-104 конструкции Туполева. Этот лайнер на высоте 10 км развивал скорость 800 км/ч.
В 60-е годы коллектив под руководством Олега Константиновича Антонова создал самый большой в мире транспортный самолет АН-22 («Антей») —цельнометаллический моноплан с высокорасположенным крылом, на котором установлены четыре турбовинтовых двигателя, общая мощность которых сравнима с мощностью всей энергетики дореволюционной России. Естественно, что управление такими гигантами возможно лишь при очень высокой степени автоматизации.
Подобное явление наблюдается и в других отраслях народного хозяйства, где высокогабаритные машины зачастую оказываются необходимыми. Большая машина не только экономичнее соответствующего числа малых, но она тоже выполняет равную работу за меньшее время, кроме того, может выполнить и такую работу, которая находится вне пределов возможности малых. Так, одноковшовые экскаваторы изготовляются с объемом ковша до 6 м 3; проектируются модели с ковшами 12—20 м 3. Вскрышные экскаваторы сооружаются с емкостью ковша от 6 до 154 м3. Ходовое оборудование у наиболее мощных моделей — четыре спаренные гусеницы. Многоковшовые экскаваторы также имеют гусеничный, а иногда и шагающий ход. В частности, в роторных экскаваторах рабочий орган — ротор — имеет до 12, а иногда до 24 ковшей большой емкости. Эти экскаваторы могут перетащить грунт на расстояние до 150 м с глубиной копания до 25 м. В 60-е годы на Новокраматорском заводе был начат выпуск роторных экскаваторов производительностью 3000 м3/ч, а в следующем десятилетии — уже 5000 м3/ч.
Нужно отметить, что в экскаваторы, как, впрочем, и в некоторые другие машины, начали вводиться два важных усовершенствования. Это гидропривод и шагающий ход. Гидравлические механизмы имеют ряд преимуществ по сравнению с механическими и электромеханическими передачами: с их помощью можно получить быстродействующие системы большой мощности и высокой точности. Поэтому они находят себе применение на самолетах, на судах с подводными крыльями, на ракетах, на прессах, на металлообрабатывающем оборудовании, на землеройных машинах.

Росли габариты и энергетических машин. В конце 50-х годов в Харькове были сооружены паровые турбины мощностью 100 МВт. Эти Турбины успешно работали на отечественных тепловых электростанциях. Но вскоре выяснилось, что необходимы еще более мощные машины, и вот создаются турбины, мощность которых за одно десятилетие возросла в 2,5—5 раз, а в 70-е годы мощность паровых турбин в одном агрегате увеличилась уже в 13 раз.

Растет также мощность гидротурбин, при этом наблюдается тенденция к снижению веса и одновременно к повышению технико-экономических показателей машины. Уже в 70-е годы мощность гидравлических турбин превысила 600 МВт в агрегате.

Все современные высокомощные и высокопроизводительные гигантские машины соответствуют потребностям конкретного периода в развитии общества. Однако увеличение габаритов, веса, мощности, скоростей не может быть беспредельным. В какой-то момент параметры машины войдут в противоречие с ее производительностью, экономичностью, стоимостью и возможностями эксплуатации. Тогда появится решение проблемы, основанное на новых принципах, будет создана новая машина или предложен новый технологический процесс.

В середине века были созданы машины, при помощи которых человек вышел в космическое пространство. Первый советский искусственный спутник Земли, первый полет человека в космос свидетельствовали о том, что возможности машин еще не исчерпаны. Правда, эти машины не похожи на машины прошлого века, которые, в свою очередь, также значительно отличались от своих «предков», хотя и не столь коренным образом. Меняются и принципы действия, и механизмы, из которых собрана машина, и материалы, из которых она изготовлена, ее форма и внешний вид. Бывает и так, что последнее оказывается решающим, старое содержание прячется под новой формой. Но какими бы разнообразными ни были машины и какие бы отрасли промышленности они ни обслуживали, всем им свойственно то, что они заменяют человека в какой- либо из его функций. Они заменяют или его физическую силу, или его профессиональное умение, или какую-либо из его физиологических функций, или его умственную деятельность. Важно еще и то, что с помощью машин можно воспроизвести не только те функции, которые присущи человеку, но и такие, которые ему не свойственны, но они есть у других представителей животного мира, например у дельфинов или пчел…
Говоря об экскаваторах, мы упоминали, что некоторые из них являются «шагающими». Шагающим машинам принадлежит большое будущее: такая машина может пройти и по бездорожью, и по пересеченной местности.

Мы только что говорили о машине как об искусственном «организме», способном заменять некоторые человеческие функции. Но она может заменить и целую группу функций и стать, таким образом, некоторым подобием человека.

Эта идея не нова. Мечты о создании механического человека встречаются в греческой мифологии, в сочинениях средневековых алхимиков и в трудах философов-просветителей. Еще два века назад многие механики работали над созданием автоматов, которые в большей или меньшей степени напоминали человека и животных.

Создание систем, в чем-то схожих с человеком, стало возможным, когда высокой степени совершенства достигли ЭВМ. Роботы и манипуляторы появились в промышленности в первые годы второй половины века. Сначала они применялись там, где непосредственное участие человека в рабочем процессе было невозможным или опасным, — в атомной энергетике, в космосе, на морских глубинах, в некоторых химических производствах.

Только три десятилетия назад в США был выдан патент на автомат, который впервые назвали промышленным роботом, там же были всего за несколько лет построены первые образцы таких машин, вскоре попавшие в Японию. Теперь Япония ведущая страна по производству промышленных роботов, в котором заняты более ста фирм.

В нашей стране созданы роботы как универсального, так и специализированного применения. Их конструкции непрерывно совершенствуются. Семейства роботов и манипуляторов постоянно пополняются новыми образцами. Лишь несколько десятков лет отделяет нас от того времени, когда на Луне начала работать советская космическая станция, обладавшая системой искусственного зрения, которая смогла иcqлe- довать спутник Земли в непосредственной близости к нему. Американский луноход уже мог передвигаться по поверхности Луны по командам с Земли. В 1970 г. на Луну был доставлен с помощью автоматической межпланетной станции советский самоходный аппарат «Луноход-1», который имел шасси высокой проходимости и принимал команды с Земли. Через три года уже начал работать «Луноход-2» — автоматический аппарат с целым рядом усовершенствований.

Это было началом нового направления техники — космической техники, которая в течение последнего десятилетия развилась в важное универсальное направление.

Вообще же машины автоматического действия — это машины будущего. Постепенно они осваивают все большее и большее число функций человека и живого организма, очевидно, с их помощью будут решены не только специальные задачи машинной техники, но и одна очень важная, общая многим отраслям промышленности задача механизации трудоемких и тяжелых работ, которая до настоящего времени создает разрывы в цепи полной автоматизации производственных процессов.

Мы говорили уже о некоторых аналогиях между миром живых существ и миром машин. Обратим внимание на тот факт, что совершенствование живых существ, приобретение ими новых качеств и переход в «новое состояние» требуют многих миллионов лет. Сам человек развивался не менее двух миллионов лет. Машина же — результат человеческого творчества, напряженной и непрерывной работы мысли и умения целого ряда сменявших друг друга поколений, как уже говорилось, прошла свой путь совершенствования всего за две с половиной тысячи лет.

В настоящее время много работ по обслуживанию человека на производстве и даже в быту переложено н-а машины. Уже есть основание к общеизвестным «царствам» природы — растительному и животному — добавить «царство» машин.

В последние годы специалисты в области генетики далеко продвинулись в понимании сущности живых средств. Возникло новое научно-техническое направление — генная инженерия, исследующая возможность изменения биологической природы живого существа. Операции генной инженерии по своей сущности в чем- то подобны операциям совершенствования машины: и в том, и в другом случае объект приобретает новые свойства, отсутствующие у исходного.

Еще два века назад естествоиспытатели хотели подойти к животному и к человеку как к машинам. Но о сущности машины ясного представления еще не было, да и о человеке познания были весьма неполными. Поэтому подобным утверждением ставили знак равенства между двумя неизвестными объектами и из этого выводили далеко идущие следствия.

В настоящее время оба объекта — и человек, и машина — изучены значительно лучше. Поэтому попробуем выяснить то общее, что присуще обоим этим объектам, но с другой точки зрения. Принимая во внимание, что машины — это результат интенсивного человеческого труда и человеческой мысли, а также и то, что они создавались как искусственное продолжение (и развитие) того или иного органа человека, можно, стало быть, говорить об их естественной истории. Наш краткий экскурс в эту историю показал, что развитие машин шло, несмотря на кажущуюся хаотичность, по строгим закономерностям. Все излишнее, ненужное, возникающее на протяжении срока такого краткого по сравнению с жизнью человечества отбрасывалось и оставалось в памяти лишь как курьезы, не заслуживавшие серьезного внимания. Впрочем, здесь, как и в других областях человеческой деятельности, случались и ошибки: отброшенные «курьезы» оказывались интересным решением технической задачи, и к ним возвращались, но уже на новом техническом уровне.

Так как машины являются усовершенствованными и целенаправленными органами человека, то, очевидно, принципиальное подобие между живым существом и его механическим отображением все время возрастает. В особенности это относится к машинам автономного действия. Возникают машины с искусственным интеллектом, самообучающиеся машины и, очевидно, появятся в ближайшее время еще новые классы этих машин. Возможно, что в дальнейшем искусственный интеллект будет создаваться не на электронной, а на биологической нейронно-волоконной основе. Но все это — дело будущего.

В целом можно так сформулировать основные этапы эволюции машин: 1) от времени изобретения первых механизмов до конца первой трети XVIII в. — машина заменяет физическую силу человека, ее составляют двигатель, передача, рабочий орган; 2) с середины XVIII в. до середины XX в.— машина заменяет физическую силу человека и его умение; в ее состав начинают входить элементы регулирования и управления; 3) с середины XX в. до настоящего времени — машина заменяет физическую силу человека, его умение и некоторые его физиологические и психические функции; в ее структуру входят элементы регулирования, управления, искусственного интеллекта.

Продолжение

Рекламные предложения:



Читать далее:

Категория: -

Главная → Справочник → Статьи → Форум



Разделы

Строительные машины и оборудование
Для специальных земляных работ
Дорожно-строительные машины
Строительное оборудование
Асфальтоукладчики и катки
Большегрузные машины
Строительные машины, часть 2,
Дорожные машины, часть 2
Ремонтные машины
Ковшовые машины
Автогрейдеры
Экскаваторы
Бульдозеры
Скреперы
Грейдеры Эксплуатация строительных машин
Эксплуатация средств механизации
Эксплуатация погрузочных машин
Эксплуатация паровых машин
Эксплуатация экскаваторов
Эксплуатация подъемников
Эксплуатация кранов перегружателей
Эксплуатация кузовов машин
Крановщикам и стропальщикам
Ремонт строительных машин
Ремонт дорожных машин
Ремонт лесозаготовительных машин
Ремонт автомобилей КАмаЗ
Техническое обслуживание автомобилей
Очистка автомобилей при ремонте
Материалы и шины

 



Остались вопросы по теме:
"Естественная история машин, эволюция машин"
— воспользуйтесь поиском.

Машины городского хозяйства
Естественная история машин
Транспортная психология
Пожарные автомобили
Автомобили-рефрижераторы
Монтаж и эксплуатация лифтов
Тракторы

Небольшой рекламный блок


Администрация: Бердин Александр -
© 2007-2019 Строй-Техника.Ру - информационная система по строительной технике.

  © Все права защищены.
Копирование материалов не допускается.


RSS
Морская техника - Зарядные устройства