Строительные машины и оборудование, справочник







Классификация систем автоматики

Категория:
   Автоматизация строительных машин


Классификация систем автоматики

Автоматические системы, используемые в строительных машинах и оборудовании для контроля, регулирования и управления, можно классифицировать по ряду признаков.

По характеру алгоритма управления различают системы по разомкнутому и замкнутому (с обратной связью) циклам, а также комбинированные системы. В первом случае в системе отсутствует обратная связь и управление является жестким. В такой системе (рис. 10.2, а) задающий сигнал X поступает в управляющее устройство УУ, из которого сигнал управляющего воздействия УВ направляется к объекту управления ОУдля получения выходных координат Y с учетом возможного воздействия сторонних помех F. При управлении по замкнутому циклу (рис. 10.2, б) в случае отклонения выходного параметра от заданного значения сигнал возвращается объектом управления на управляющее устройство для корректировки. Такие системы работают с изменяемыми структурой и законом управления. Комбинированное управление (рис. 10.2, в) характеризуется наличием в системе обратной связи и резервного управляющего устройства, подключаемого параллельно первому через элемент сравнения (анализатор). Установленные на схемах знаки «плюс» и «минус» характеризуют положительные или отрицательные значения задающего воздействия.

В зависимости от числа каналов обратной связи различают одноконтурные и многоконтурные системы. В последних всегда более одной замкнутой цепи воздействия.

По характеру применяемых сигналов различают непрерывные и дискретные (импульсные, релейные) системы.

По характеру изменения сигналов задатчика системы делят на стабилизирующие, программного управления и следящие. В стабилизирующих системах по поступающим постоянным сигналам выходные параметры поддерживаются практически с постоянными значениями (например, стабилизация температуры двигателя). В системах программного управления сигналы из задающего устройства меняются по заранее установленным законам и выходные параметры также изменяются во времени и пространстве. В следящих системах значения заранее неизвестны и из блока задающего устройства поступают случайно изменяющиеся сигналы, измеряемые соответствующими датчиками. Эти системы, в свою очередь, делятся на автономные, копирные и комбинированные.

По количеству выходных параметров различают одномерные и многомерные системы.

По расположению измерительных и сигнальных устройств относительно управляемого объекта и по его расположению относительно пульта автоматические контроль и управление разделяют на местные и дистанционные. Местный контроль и управление наибольшее распространение получили в передвижных, в том числе в строительных машинах. Дистанционный контроль и управление используют при одновременной работе с несколькими машинами или для приближения его к месту выполнения технологических операций рабочим органом машины. При этом значительно увеличивается роль каналов связи, осуществляющих передачу сигналов на расстояние. В качестве каналов связи используются механические, гидравлические, пневматические, электрические и комбинированные (смешанные) передачи.

Для лучшего усвоения материала рассмотрим блок-схемы основных автоматических систем, используемых для контроля, управления и регулирования.

При использовании в качестве конечного элемента сигнального преобразователя (рис. 10.3, 6) система автоматического контроля усложняется. В этом случае контролируемая величина а объекта О также подается на датчик Д. Однако в дальнейшем сигнал си от датчика поступает в сравнивающее устройство (анализатор) А. В анализаторе происходит сравнение сигнала а\ с сигналом сц, который должен быть равен сигналу а\ в соответствии с заданным значением величины а. При несовпадении сигналов а\ и аг анализатор посылает сигнал Аа об отклонении контролируемой величины а от заданного параметра. После прохождения усилителя У сигнал Aai поступает на сигнальный преобразователь СП. В отличие от рассмотренных схем автоматического контроля в системах прямого действия отсутствует усилитель.

По числу контролируемых величин различают единичный и множественный автоматический контроль, в одном из которых осуществляется контроль только одного параметра рабочего процесса и только в одном месте, а во втором — контроль нескольких параметров или одного параметра в нескольких местах при выполнении определенного технологического процесса. Множественный контроль, в свою очередь, делится на параллельный, последовательный и смешанный, представляющий сочетание из двух основных. При параллельном контроле используется необходимое количество каналов, обеспечивающих контроль всех измеряемых параметров во всех местах их расположения. Последовательный контроль позволяет получить информацию от нескольких датчиков к одному сигнальному преобразователю или же датчик имеет возможность перемещаться поочередно к различным местам получения информации.

Системы автоматической защиты (САЗ) также работают по разомкнутому циклу и в большинстве случаев являются системами непрямого действия, так как для подачи звуковых и световых предупреждающих сигналов, а также для отключения энергоснабжения машины или отдельных ее узлов мощность сигнала, получаемого от датчика, недостаточна. В отличие от блок-схемы системы автоматического контроля здесь в конце цепи обычно используют реле или контактор, отключающие управляющие цепи привода объекта, а также применяют параллельное включение различных датчиков на один сигнальный прибор или устройство релейной защиты.

Рис. 10.4. Блок-схема САУ

В блок-схеме этого управления (рис. 10.4) задающий сигнал а поступает в управляющее устройство УУ, из которого сигнал а\ о необходимости управления объектом поступает в усилитель У. Усиленный сигнал аг поступает в исполнительный орган ИО, оказывающий требуемое воздействие аз на объект управления ОУ.

Автоматическое управление бывает непрерывным и дискретным, по количеству управляемых объектов — единичным и множественным, а также местным и дистанционным. Примером местного единичного управления является работа однозубого рыхлителя по заданной программе. Дистанционное множественное управление широко используется в асфальто- и цементобетонных установках и заводах. В основном это программное управление различными технологическими процессами.

Системы автоматического регулирования (САР) являются разновидностью автоматического управления и предназначены для сопоставления действительного значения параметров выполняемого процесса с заданным и с дальнейшим управлением объектом в зависимости от результатов сопоставления (т. е. управление с использованием информации о результатах управления).

В соответствии с этим система автоматического регулирования осуществляет не только управление объектом, но и одновременный контроль за его правильной работой. Следует также отметить, что в системах автоматического регулирования рассматривается совместная работа регулируемого объекта и регулирующих устройств.

К регулирующим устройствам относятся автоматические регуляторы, позволяющие без участия человека выдерживать заданные параметры с требуемой степенью точности. Так как автоматический регулятор воздействует на регулируемый объект, а регулируемые параметры воздействуют на регулятор, вызывая в нем требуемое управляющее воздействие, цепь воздействия оказывается замкнутой и система работает с обратной связью.

В соответствии с используемой, по характеру изменения сигналов задатчика, системой (стабилизирующая, программная, следящая) изменяется и состав автоматического регулятора. Однако в общем случае блок-схема практически не изменяется. Рассмотрим состав и работу блок-схемы системы автоматического регулирования для ее различных видов.

При значительном расхождении параметров а\ и аг анализатор подает о полученной разнице сигнал Да = с в усилитель У. Усиленный сигнал с\ поступает в исполнительный орган ИО, изменяющий рассогласованный сигнал и передающий отрегулированное воздействие сг на объект регулирования ОР.
При различных видах систем автоматического регулирования в них вводятся дополнительные устройства.

В стабилизирующей САР вводится задатчик 3, подающий постоянный сигнал аг (соответствующий такому сигналу а\, который появляется в датчике Д при соразмерности регулируемого параметра а заданному постоянному значению) в анализатор А.

В программной САР сигнал аг, изменяющийся по заданному закону во времени, подается в анализатор А также от задатчика. Однако для перемещающихся во время работы машин, регулируемые параметры которых изменяются по заданной функции пути, сигнал задатчика связан с длиной пройденного пути, измеряемого дополнительным датчиком времени или пройденного пути Д2.

Различают САР прямого и непрямого действия, непрерывные и дискретные, одно- и многоконтурные и т. д.

Наряду с вышерассмотренными, в системе автоматического регулирования используется и самонастраивающая (адаптивная) система, определяющая путем автоматического поиска такое значение регулируемого параметра, которое обеспечивает наивыгоднейший режим работы регулируемого объекта при изменяющихся условиях его работы.

В качестве рабочих элементов в автоматических системах управления, регулирования, контроля и защиты используются датчики и устройства контроля и регулирования, усилители, микропроцессоры и исполнительные механизмы.


Читать далее:

Категория: - Автоматизация строительных машин





Главная → Справочник → Статьи → Форум



Разделы

Строительные машины и оборудование
Для специальных земляных работ
Дорожно-строительные машины
Строительное оборудование
Асфальтоукладчики и катки
Большегрузные машины
Строительные машины, часть 2,
Дорожные машины, часть 2
Ремонтные машины
Ковшовые машины
Автогрейдеры
Экскаваторы
Бульдозеры
Скреперы
Грейдеры Эксплуатация строительных машин
Эксплуатация средств механизации
Эксплуатация погрузочных машин
Эксплуатация паровых машин
Эксплуатация экскаваторов
Эксплуатация подъемников
Эксплуатация кранов перегружателей
Эксплуатация кузовов машин
Крановщикам и стропальщикам
Ремонт строительных машин
Ремонт дорожных машин
Ремонт лесозаготовительных машин
Ремонт автомобилей КАмаЗ
Техническое обслуживание автомобилей
Очистка автомобилей при ремонте
Материалы и шины