Современные методы определения объемов земляных работ

Категория:
   Механизация земляных работ


Современные методы определения объемов земляных работ

В практике производства земляных работ различают два понятия, определяющие объемы работ: рабочие объемы и профильные объемы.
К рабочим объемам относятся: объемы полезных выемок, независимо от того, куда направляется из них грунт; объемы первичных отвалов, если они при данной технологической схеме будут подвергаться вторичной переработке; объемы резервов и карьеров, из которых возводятся земляные сооружения.

Общий объем выемок и насыпей, входящий в контуры данного сооружения, носит название профильного объема. В профильный объем не включаются карьеры, резервы, отвалы и кавальеры.

При транспортных схемах разработки грунта рабочий объем, если отсутствуют дополнительные отделочные операции, должен быть меньше профильного.
Производительность одноковшовых экскаваторов в значительной степени зависит от своевременного, на стадии проектирования, определения объема работ. Эта работа весьма трудоемкая и кропотливая. Осуществлены работы по классификации и систематизации объектов земляных сооружений, проанализированы исходные материалы и формулы подсчета объемов работ с учетом особенностей рельефа местности в поперечной и продольной осях сооружений.

В практике проектирования для подсчета объемов земляных работ применяют математические методы и электронно-вычислительную технику. Эти вопросы частично решены при разработке систем ведения земляных работ на предприятиях горно-рудной и угольной промышленности и в железнодорожном строительстве. Основные типы земляных сооружений в этих областях строительства по видам и схемам работ стандартны, что позволило разработать систему Проектирования земляных работ.

Все виды земляных сооружений и виды работ классифицируют на две группы: наиболее часто встречающиеся типовые участки и участки, требующие индивидуального проектирования. К типовым участкам относятся поперечные профили насыпей высотой до 12 м с уположением откоса в нижней части сооружения на 0,25 м и выемки без ограничения глубины и без уположения откоса. Принимается также, что поверхность земли — прямая линия. Нарушение любого из перечисленных ограничений переводит данный участок в область индивидуального проектирования. Опыт проектирования показывает, что в железнодорожном строительстве доля типовых поперечных профилей составляет 70…80%, остальная часть работ характеризуется использованием берм, дополнительных уширений, уположе-ний откосов и т. п.

В промышленном строительстве доля типовых решений меньше. Площадь поперечного сечения земляного сооружения насыпи или выемки определяют по координатам. В качестве примера на рис. 5, а показано сечение насыпи с точками перегиба 1…6. На индивидуальных поперечниках эти точки задают в качестве исходных, а на типовых — вычисляют, исходя из заложений т откоса, косогорности К и ширины основной площадки В2 или полной ширины выемки по низу.

Рис. 5. Поперечный профиль насыпи (а) и блок-схема (б) расчета объема земляных работ

Для насыпи на участках в осях х—у определяют точки. Для выемки определяют аналогично координаты нижней части выемки.

Координаты точек поперечного сечения вычисляют с учетом уширения земляного сооружения на кривых. Используя методы наименьших квадратов и аналитической геометрии, определяют все координаты контура. Последовательность этих расчетов в зависимости от варианта расположения основания (I—I, II—II, III—III) показана в укрупненной блок-схеме (рис. 5, б).

После вычисления координат всех вершин контура определяют площади поперечников. На участках типового проектирования для насыпей к полученной величине площади поперечника добавляют площадь сливной призмы, которую определяют по ее заданной высоте, а для выемок — стандартную площадь двух кюветов. При расчете площади поперечника на участках индивидуального проектирования вершины контура нумеруют по часовой стрелке (иначе значение площади будет отрицательной величиной).

Для продольных профилей земляного полотна типична закономерность высотного размера с частыми переходами через нуль. Для этих условий поперечники земляного полотна бывают в виде трапецеидального клина и призматоидов.

Программа с указанными параметрами может быть использована при любой ширине земляного полотна, любом коэффициенте заложения откосов и высоте поперечных сечений.

Засылая в память машины конкретные значения параметров, получают искомый объем насыпи или выемки. Расчеты показали, что такая методика допускает погрешность не более 1-1,5%.

Указаниями по составу проектов производства работ предусматривается проведение различных вариантов работ и выбор наиболее рационального. Это весьма трудоемкая работа, что ограничивало, как правило, просчет необходимого числа вариантов. Применение математических методов автоматизированного проектирования позволило значительно сократить сроки проектирования и повысить достоверность рекомендаций выбора вариантов.

В Московском институте инженеров транспорта, под руководством профессора С. П. Першина, разработаны математические программы для автоматизации определения не только объемов насыпей и выемок с применением ЭВМ (по выше приведенной методике и формуле), но и для выбора оптимального варианта трассы, ведущих машин и распределения земляных масс на крупных объектах. Расчет 100 вариантов при годовом объеме работ 28…30 млн. руб. и количестве одновременно возводимых объектов от 30 до 130 занимает 4…6 мин машинного времени.

В промышленном строительстве расположение земляных сооружений диктуется технологическим процессом строящегося предприятия. Задача правильного ведения работ заключается в выборе такого места на местности, при котором объемы земляных работ будут наименьшими. В железнодорожном и автодорожном строительстве при ведении мелиоративных работ объемы земляных работ в значительной степени зависят от правильного выбора трассы.

В практике строительства нашла применение автоматизированная система трассирования линейных сооружений, которая предусматривает (рис. 6) автоматизированное формирование необходимых исходных данных для проектирования продольного профиля сооружений и получения оптимальных показателей (наименьшего объема работ) на основе автоматизированного расчета и сопоставления вариантов.

На машинах (ЭВМ) — носителях информации формируется постоянный справочно-информационный фонд (нормы проектирования, типовые решения земляных сооружений, некоторые виды единичных расценок и т. п.).

Перед началом работ на конкретной линии создается справочно-информационный фонд, включающий параметры проектируемой линии (категория, руководящий уклон, полезная длина приемоотправочных путей, вид тяги, тип верхнего строения пути и т. д.); групповые поперечные профили земляного полотна для мест индивидуального проектирования; параметры и исходные данные для расчета стока; допускаемые или предпочтительные виды грунтов насыпей (обыкновенный, дренирующий и т. д.), типы ИССО (малые и средние); управляющие данные по типам и мощностям землеройно-транспортных машин (объем ковша экскаваторов, наличие отдельных видов машин и т. д.); данные, формирующие сметную стоимость (район ЕРЕР, единичные расценки на некоторые виды работы, процент временных и прочих дополнительных затрат и т. д.).

На полосе варьирования создают цифровую модель местности, состоящую из моделей рельефа, ситуации, инженерно-геологических условий, гидрографической сети и т. д.

Выбор типа объекта включает три этапа.

Вначале из имеющихся типов исключаются те, которые неприемлемы по каким-либо соображениям по данной линии (например, по условиям унификации исключаются мосты с определенной длиной пролетов, некоторые виды труб и т. д.). Это выполняется с использованием данных справочно-информационного фонда линии.

Затем для конкретных мест на трассе исключаются типы, технически непригодные (например, при наличии постоянного водотока все виды круглых труб и т. д.). Эта операция выполняется с использованием таблицы условий применимости, являющейся принадлежностью каждого типа.

Рис. 6. Блок-схема автоматизированного расчета трассы земляного сооружения

Заключительной операцией является окончательный отбор типа из всех оставшихся по принципу наименьшей стоимости.

Подобным образом осуществляется выбор механизмов и, как результат,— выбор единичных стоимостей отдельных видов работ.

На основе привязанных типов отдельных объектов формируются графики зависимости стоимости их сооружения от рабочей отметки и ограничения на проектную линию. Эти данные позволяют определить оптимальное положение проектной линии и уже, исходя из этого, — все показатели варианта. Окончательный профиль (в виде подробного и сокращенного) с таблицами показателей выводится на печать и графопостроитель.

В настоящее время применяют ряд графических и графоаналитических методов, позволяющих снизить трудоемкость работ. В качестве примера следует рассказать о графическом методе определения геометрических размеров резервов, применяемом вместо трудоемкого метода последовательного приближения. По графику (рис. 7, а) определяют ширину резерва по верху Вр для прямых участков пути.

Применяя графический метод расчета, можно определять максимально возможную ширину резерва поверху в зависимости от высоты насыпи и установленной проектом ширины полосы отвода; возможный к разработке объем грунта в резерве в зависимости от глубины резерва и его ширины поверху; ширину резерва поверху (при заданной его глубине), при которой обеспечивается потребность в грунте для сооружения насыпи.

В случае превышения объема насыпи над объемом грунта в резерве к производству работ принимают расчетную максимально возможную ширину резерва поверху; при превышении объема резерва на данном участке над объемом насыпи по графику подбирают необходимую ширину резерва поверху.

Рис. 7. Графики расчета параметров резервов: ширины поверху (а) и площади сечения (б)
1 — При ширине бермы в 7,1 м; 2 — при ширине бермы 2 м; 3 —резерв с односкатным дном; 4 — резерв с двускатным дном; 5 — линия перехода резерва из односкатного в двускатный

При плотности грунтов в естественном залегании, отличающейся от требуемой проектом плотности в теле земляного полотна, необходимый объем грунта для отсыпки насыпи следует умножать на коэффициент относительного уплотнения.

Категория: - Механизация земляных работ




Главная → Справочник → Статьи → Форум


Разделы

Строительные машины и оборудование
Для специальных земляных работ
Дорожно-строительные машины
Строительное оборудование
Асфальтоукладчики и катки
Большегрузные машины
Строительные машины, часть 2,
Дорожные машины, часть 2
Ремонтные машины
Ковшовые машины
Автогрейдеры
Экскаваторы
Бульдозеры
Скреперы
Грейдеры


Ручные машины
Сборка строительных машин
Электрооборудование строительных машин

Подъемно-транспортные машины и оборудование
Землеройно-транспортные машины
Краны на железнодорожном ходу
Подъемно-транспортные машины
Краны башенные серии КБ
Краны-трубоукладчики
Краны автомобильные
Краны предприятий
Краны стреловые
Краны башенные
Краны мостовые
Краны кабельные
Краны козловые

Такелажные приспособления
Погрузчики
Монтаж строительных конструкций
Разное




Реклама на сайте от 100 руб.

Эксплуатация строительных машин
Эксплуатация средств механизации
Эксплуатация погрузочных машин
Эксплуатация паровых машин
Эксплуатация экскаваторов
Эксплуатация подъемников
Эксплуатация кранов перегружателей
Эксплуатация кузовов машин
Крановщикам и стропальщикам


Ремонт строительных машин
Ремонт дорожных машин
Ремонт лесозаготовительных машин
Ремонт автомобилей КАмаЗ
Техническое обслуживание автомобилей
Очистка автомобилей при ремонте
Материалы и шины


Механизация земляных работ
Механизация строительства
Механизация дорожных работ
Автоматизация строительства
Малая механизация
Бетонные работы
Мини-тракторы


Машины городского хозяйства
Естественная история машин
Транспортная психология
Пожарные автомобили
Автомобили-рефрижераторы
Монтаж и эксплуатация лифтов
Тракторы


Статьи по теме::
Экономия горючего при механизации землянных работ
Подбор машин в комплектах и отчетность в машинно-дорожных отрядах (мдо)
Подбор машин в комплектах
Резервное и вспомогательное оборудование
Подбор комплектов машин для комплексной механизации земляных работ
Производительность бульдозеров
Производительность грейдера-элеватора
Комплексная работа грейдера ГТ-12 с трактором С-50 и автогрейдера Д-144
Производительность грейдеров и автогрейдеров
Производительность рыхлителей


Остались вопросы по теме:
"Современные методы определения объемов земляных работ"
— воспользуйтесь поиском.

Поиск по сайту: