Воздушную сортировку (сепарацию) применяют главным образом для разделения на фракции тонкоразмолотых материалов крупностью менее 80—100 мк, когда использование вибрационных грохотов нецелесообразно вследствие их малой производительности и быстрого износа тонких сит. Воздушная сортировка (сепарация) основана на том, что крупные частицы сортируемого материала, находящиеся в потоке воздуха, под влиянием сил (гравитационных, центробежных, инерции, трения) осаждаются, а мелкие (тонкая фракция) уносятся воздушным потоком.
Воздушная сортировка нашла широкое применение в помольных установках, работающих по замкнутому циклу, при помоле цементного клинкера, гипса, извести, сухой глины и других материалов. Использование в помольных установках горячего воздуха или газа позволяет совместить процессы сушки и помола материалов в одном агрегате. При этом нагретый воздух (газ) выполняет функции транспортирующего и сушильного агента. Применение воздушных сепараторов позволяет повысить производительность размольного агрегата на 25—50% и снизить удельные энергозатраты на 10—20%. При этом выигрыш в производительности и энергозатратах тем больше, чем выше тонкость помола готового продукта.
Воздушные сепараторы классифицируют на проходные и циркуляционные.
В проходных сепараторах материал (пылевоздушная смесь) разделяется под влиянием силы тяжести, центробежной,, силы или центробежной силы в сочетании с силой тяжести.
Исходный материал в смеси с воздухом со скоростью 15—20 м/сек поступает из помольного агрегата по патрубку (рис. 1-44) в полость между корпусами. Вследствие резкого увеличения объема пространства, а также трения о стенки корпусов скорость воздушного потока падает и крупные частицы материала выпадают и отводятся по патрубку на домол в мельницу. Более тонкие частицы движутся вверх с меньшей скоростью и проходят между лопатками. Регулируя угол поворота лопаток специальным механизмом, меняют направление и скорость движения потока, тем самым регулируют границу разделения частиц.
Поступая во внутренний корпус, более крупные частицы вследствие падения скорости и трения о стенки выпадают из потока и по патрубку также направляются на домол.
Воздушный поток с тонкими частицами материала со скоростью 4—6 м/сек через патрубок направляется в аппараты для очистки воздуха от пыли (циклоны, рукавные и электрические фильтры и др.).
Рис. 1-44. Воздушный проходной сепаратор
Проходные сепараторы используют в помольных установках с вентилируемыми мельницами, а также в мельницах небольшой производительности. Эти сепараторы характеризуются повышенным расходом энергии, затрачиваемой на пневматическое транспортирование материала из мельницы в сепаратор. В циркуляционных сепараторах исходный материал обычно подается в сепаратор механическим транспортом (например, элеватором).
Циркуляционные сепараторы в отличие от проходных работают с замкнутой циркуляцией воздуха, и пылевоздушная смесь образуется в самом сепараторе.
По методу разделения частиц эти сепараторы можно условно разделить на две группы.
К первой группе относят аппараты, в которых разделение материала происходит под действием центробежной силы, направленной перпендикулярно или под углом к направлению движения потока. Такие сепараторы называют поперечнопоточными.
Вторую группу образуют противопоточныесепараторы, в которых материал разделяется под действием центробежной силы, направленной навстречу радиальной составляющей движения потока.
Критерии для качественной оценки любого сепаратора следующие:
1) воздушный поток в своем сечении должен иметь одинаковые скорости;
2) силы, действующие на каждую частицу, должны находиться в различной функциональной зависимости от ее размера и иметь противоположное направление;
3) для частиц определенной величины (граничного размера) в зоне разделения необходимо устанавливать динамическое равновесие; частицы других размеров должны выноситься из зоны разделения в различных направлениях: меньшие в одну сторону, большие — в другую;
4) величины действующих сил для частиц любого размера должны регулироваться в широких пределах.
Наиболее полно этим условиям удовлетворяют сепараторы второй группы. Следовательно, принципиальная схема противопоточных сепараторов более совершенна.
Рассмотрим принцип действия противопоточного циркуляционного сепаратора (рис. 1-45). Сепаратор приводится в движение электродвигателем, на валу которого закреплены вентилятор, верхняя крыльчатка, разбрасывающий диск и нижняя крыльчатка. Материал по загрузочным воронкам поступает на вращающийся Диск и под действием центробежной силы веером сбрасывается с него. Происходит первый отбор крупных частиц, которые выпадают вниз или, долетая до стенки, сползают по ней в разгрузочный бункер и по воронке возвращаются на домол. Создаваемый вентилятором воздушный поток увлекает более мелкие частицы в основную зону А разделения, находящуюся внутри корпуса. Благодаря действию вентилятора и нижней крыльчатки в этой зоне возникает воздушный вихрь; на каждую частицу действуют две силы: центробежная, пропорциональная диаметру частицы третьей степени, и сила давления потока, которая пропорциональна диаметру во второй степени. В зависимости от размера частицы будет превалировать одна из этих сил. Мелкие частицы, для которых сила давления потока больше центробежной, выносятся в вентилятор.
Крупные частицы и комья мелких частиц преобладающим действием центробежной силы отбрасываются к стенке и, сползая по ней вниз, перемешиваются с крупными частицами, сброшенными с диска. Этот материал попадает в нижнюю зону В сепарации, где происходит дополнительный отдув через жалюзи имеющихся в материале тонких фракций.
Поток воздуха с мелкими частицами направляется вентилятором в зону Д осаждения, ограниченную стенками внутреннего и наружного корпусов. Здесь под действием центробежных сил, возникающих вследствие поворотов потока, частицы поджимаются к стенке наружного корпуса, теряют живую силу, сползают по стенке в конусную часть и через выпускной патрубок поступают на транспортирующие устройства и далее на склад.
Границы разделения частиц регулируются углом наклона лопастей верхней крыльчатки или изменением их количества.
Процесс движения частиц в двухфазном потоке весьма сложен и мало изучен. Строгой методики расчета воздушных сепараторов различных типов не имеется.
К. п. д. и эффективность сепараторов зависят от вида обрабатываемого материала, его влажности, формы частиц и их размеров, конструкции сепаратора, требуемой дисперсности готового продукта и т. д. Анализ работы воздушных сепараторов в промышленных условиях показывает, что к. п. д. их в среднем равен 65% при частных значениях, лежащих в пределах 45—80%.
Рис. 1-45. Воздушный циркуляционный сепаратор
В последнее время в цементной промышленности успешно внедряются электростатические сепараторы конструкции ВНИИЦеммаша, в которых для разделения частиц по крупности используют электрическое поле коронного разряда. Эти сепараторы имеют ряд существенных преимуществ перед воздушными циркуляционными как по удельным расходам энергии и металлоемкости, так и по точности разделения материала.
Строительные машины и оборудование
→ Для специальных земляных работ
→ Дорожно-строительные машины
→ Строительное оборудование
→ Асфальтоукладчики и катки
→ Большегрузные машины
→ Строительные машины, часть 2,
→ Дорожные машины, часть 2
→ Ремонтные машины
→ Ковшовые машины
→ Автогрейдеры
→ Экскаваторы
→ Бульдозеры
→ Скреперы
→ Грейдеры
Эксплуатация строительных машин
→ Эксплуатация средств механизации
→ Эксплуатация погрузочных машин
→ Эксплуатация паровых машин
→ Эксплуатация экскаваторов
→ Эксплуатация подъемников
→ Эксплуатация кранов перегружателей
→ Эксплуатация кузовов машин
→ Крановщикам и стропальщикам
Ремонт строительных машин
Ремонт дорожных машин
Ремонт лесозаготовительных машин
Ремонт автомобилей КАмаЗ
Техническое обслуживание автомобилей
Очистка автомобилей при ремонте
Материалы и шины
Остались вопросы по теме:
"Оборудование для воздушной сепарации"
— воспользуйтесь поиском.
→ Машины городского хозяйства
→ Естественная история машин
→ Транспортная психология
→ Пожарные автомобили
→ Автомобили-рефрижераторы
→ Монтаж и эксплуатация лифтов
→ Тракторы