Строительные машины и оборудование, справочник





Диагностирование систем двигателя внутреннего сгорания

Категория:
   Диагностирование строительных машин


Диагностирование систем двигателя внутреннего сгорания

На мощность двигателя внутреннего сгорания оказывают влияние следующие факторы: износ деталей цилиндропоршневой группы, кривошипно-шатунного и газораспределительного механизмов; износ и обгорание клапанов и седел; неисправности систем питания, охлаждения и смазки. Количественным показателем неисправности двигателя является снижение его мощности на 6-8%.

В двигателе внутреннего сгорания цилиндропоршневая группа работает в наиболее тяжелых условиях (газовая среда, высокая температура, большие циклические нагрузки). При этом происходит интенсивное изнашивание деталей, что приводит к прорыву газов из камер сгорания в картер, увеличению шума и вибрации, загрязнению моторного масла и его потере на угар, снижению герметичности в надпоршневом пространстве.

Диагностирование цилиндропоршневой группы производится по функциональным параметрам: изменению давления сжатия в цилиндрах; прорыву газов в картер; угару масла; утечкам сжатого воздуха, подаваемого в цилиндр; разрежению в камере сгорания; изменению шума и вибрации; изменению параметров моторного масла; величине тока, потребляемого стартером.



Большое количество параметров определения технического состояния цилиндропоршневой группы позволяет объединять их по трем зонам измерений: камера сгорания, блок цилиндров, картер двигателя. В зоне камеры сгорания проверяют, как правило, давление сжатия, прорыв газов в картер, утечку сжатого воздуха, разрежение в камере сгорания. Давление сжатия (компрессию) в каждом цилиндре проверяют компрессометром не менее трех раз на прогретом двигателе при вращении коленчатого вала стартером или пусковым двигателем. Минимально допустимое давление сжатия для двигателей с искровым зажиганием равно 0,6-0,7 МПа, для дизельных — 1,4 МПа. При этом разница показаний в цилиндрах не должна быть больше 0,1 МПа. Снижение давления на 40% указывает на поломку или залегание колец, либо на предельный износ колец и гильзы, либо на неплотность сопряжения «клапан—гнездо». Неисправность сопряжений «кольцо— гильза» определяется повторным замером давления после добавления в камеру сгорания 20—25 см3 моторного масла. Увеличение давления указывает на значительный износ колец и гильзы.

Прорыв газов в картер зависит от износа колец и гильзы. Объем этих газов измеряют при максимальном крутящем моменте газовым расходомером, соединенным через шланги с маслозаливной горловиной. Расход картерных газов изменяется в пределах от 30 до 200 л/мин и зависит от типа двигателя и его наработки. Так, для двигателя Д-160 номинальный расход картерных газов составляет 46 л/мин, а предельный — 120 л/мин.

Герметичность камеры сгорания характеризует техническое состояние колец, цилиндра, прокладки головки цилиндров и сопряжения «клапан—гнездо» . Параметрами ее оценки могут быть разрежение и утечка сжатого воздуха, подаваемого в цилиндр.

Разрежение измеряют вакуумметром. Герметичность камеры сгорания является достаточной, если при вращении коленчатого вала стартером создается разрежение 0,5-9,6 кПа. Техническое состояние двигателя хорошее, если при проверке герметичность цилиндра составляет 95-100% и требуется ремонт его при значениях герметичности менее 75% для дизельного и 80% для карбюраторного.

При предельных значениях герметичности цилиндра дополнительно проводятся измерения для установления места неисправности.

Замер относительной утечки воздуха и определение места утечки производятся путем подачи его в цилиндр через отверстие для форсунки или свечи в головке блока. При открытом впускном вентиле 9 и закрытом вентиле 12 воздух из магистрали попадает в редуктор, проходит калибровочное отверстие, сообщается с измерительным манометром и затем через обратный клапан, гибкий шланг и испытательный наконечник поступает в цилиндр двигателя. Процент утечки воздуха фиксируется манометром, где отмечены три зоны: 1) нормальное техническое состояние цилиндра; 2) необходим текущий ремонт; 3) предельное состояние цилиндра, требуется капитальный ремонт.

Для определения дефекта открывают вентиль 12 и закрывают вентиль 9. В этом случае воздух поступает от магистрали непосредственно в цилиндр через испытательный наконечник. Место выхода воздуха позволяет определить неисправность. Так, выход сжатого воздуха через маслозаливную горловину указывает на износ цилиндра и колец, а через воздухоочиститель — на неплотность прилегания к гнезду впускного клапана. Если же сжатый воздух выходит через глушитель, то нарушена герметичность сопряжения «выпускной клапан—гнездо». Проверяют также, нет ли утечки воздуха в прокладке между головкой и блоком цилиндров. Для этого края прокладки смазывают маслом или мыльной водой и наблюдают, нет ли пузырьков воздуха на стыке головки и блока и в наливной горловине радиатора. Появление пузырьков воздуха в радиаторе указывает на пробой прокладки между цилиндром и каналом системы охлаждения.

Если обнаружены неплотности в клапанах или в сопряжениях «поршневое кольцо—гильза», следует уточнить состояние цилиндров путем замера утечки воздуха при положении поршня в начале такта сжатия. Состояние цилиндров в этом случае характеризует разность утечки воздуха при положении поршня в начале такта сжатия и в конце. Если эта разность больше значения, указанного в технических условиях, то цилиндры требуют капитального ремонта. По утечке воздуха при положении поршня в начале такта сжатия судят о состоянии поршневых колец и клапанов.

Основным структурным параметром, характеризующим работоспособность кривошипно-шатунного механизма, является радиальный зазор подшипниковых узлов. Для оценки технического состояния используют функциональные параметры: давление масла в главной масляной магистрали; расход масла в единицу времени; шум и стуки, возникающие в сопряжениях.

Давление масла определяется при нормальном тепловом режиме с номинальной частотой вращения коленчатого вала, затем на холостом ходу. При номинальной частоте вращения давление масла для разных двигателей колеблется в пределах 0,2-0,7 МПа, а при минимальной равно 0,1 МПа.

Одним из наиболее эффективных способов определения технического состояния кривошипно-шатунного механизма является прослушивание неработающего двигателя, камеры сгорания которого подключены к ком-прессорно-вакуумной установке, создающей в надпоршневом пространстве разрежение и повышенное давление. Для окончательного решения о состоянии проверяемых сопряжений измеряют суммарный зазор, который для разных двигателей равен 0,3-0,5 мм.

При работающем двигателе глухой, низкого тона стук в нижней части картера указывает на износ коренных подшипников. Ритмичный, металлический, звонкий стук среднего тона в средней части блока цилиндров, как правило, вызван износом шатунных подшипников. При значительном износе поршневых пальцев в верхней части блока прослушивается ритмичный, высокого тона с металлическим оттенком стук.

Регулярный металлический стук в зоне крышки головки блока указывает на увеличенные зазоры в клапанном механизме.

Параметрами контроля механизма газораспределения являются: тепловой зазор между стержнем клапана и коромыслом, герметичность сопряжения «клапан—гнездо», высота кулачка распределительного вала, упругость клапанных пружин, характерные стуки в зоне подшипников распредвала.

Тепловой зазор в зависимости от конструкции двигателя находится в пределах 0,25-0,45 мм. Величина зазора определяется с помощью устройства, которое исключает необходимость установки поршня проверяемого цилиндра в определенное положение.

Герметичность клапанов проверяют по утечке воздуха через сопряжение «гнездо—клапан» с помощью прибора. Предельные значения утечки воздуха для разных двигателей — 50-60 л/мин.

Износ кулачков распредвала определяют по максимальному перемещению клапана, которое не должно быть менее 9-12 мм.

Проверка упругости пружины клапана производится прибором. При усилиях на сжатие менее 170-200 Н пружины необходимо заменять.

На СДМ, как правило, устанавливаются дизельные двигатели, неисправности которых могут быть вызваны неисправностями топливной аппаратуры (до 40% отказов).

Топливная аппаратура должна обеспечивать минимальный расход топлива при допустимых значениях выброса токсичных компонентов с отработавшими газами и уровнем шума. Эта задача решается оптимизацией начала впрыска, цикловой подачи и качеством распыла топлива в зависимости от загрузки двигателя и условий его работы.

В механических системах управления подачи топлива муфта опережения угла впрыскивания позволяет регулировать начало впрыска, а винтовая кромка плунжера ТНВД при повороте изменяет цикловую подачу топлива в зависимости от частоты вращения коленчатого вала и загрузки двигателя.

В настоящее время все более широкое распространение получили системы электронного управления работой дизельного двигателя, которые обеспечивают соответствие его самым жестким требованиям по токсичности отработавших газов при минимальном расходе топлива. Они обеспечивают подачу топлива в цилиндр по времени и количеству в зависимости от частоты вращения коленчатого вала, температуры воздуха, температуры охлаждающей жидкости и масла, расхода воздуха, состава отработавших газов, положения акселератора и усилия на рабочем органе (загрузки двигателя).

Основными параметрами, характеризующими техническое состояние топливной аппаратуры с механической системой управления подачи топлива, являются: давление впрыска и качество распыливания топлива форсунками, производительность подкачивающего насоса и элементов топливного насоса высокого давления, износ плунжерных пар и клапанов, угол опережения подачи топлива, состояние фильтров грубой и тонкой очистки. Проверке в первую очередь подвергают фильтр тонкой очистки, перепускной клапан и подкачивающий насос, содержание углеводородов в отработавших газах. Давление перед фильтром должно быть не менее 0,09 МПа, а после фильтра — в пределах 0,06-0,08 МПа.

Одной из главных причин отказов топливной системы является неисправность форсунок. При диагностировании двигателя применяют два варианта проверки технического состояния форсунок: со снятием с двигателя и без снятия с использованием приспособления, которое позволяет определять давление и качество распыливания топлива форсункой. Для разных двигателей давление срабатывания равно 13-21 МПа. Качество распыливания определяется стетоскопом при нагнетании топлива в форсунку приспособлением. Впрыск сопровождается четким характерным звуком удара иглы форсунки в седле. Проверяют также герметичность форсунки. Снижение давления с 28 до 23 МПа должно продолжаться не менее 5 с. Для проверки работоспособности форсунок применяют также максиметры.

При проверке работоспособности топливного насоса давление, развиваемое каждой плунжерной парой, должно быть не менее 30 МПа. Если оно меньше, то насос отправляется в ремонт. Герметичность нагнетательного клапана проверяется при давлении 15 МПа, по достижении которого отключают подачу топлива. Если время падения давления до 10 МПа не более 10 с, то насос отправляется в ремонт.

При диагностировании топливной системы проверяется угол опережения подачи топлива, который оказывает влияние на полноту и качество сгорания топлива.

Уровень дыма в отработавших газах определяется прибором. На процесс воспламенения смеси наряду с системой топливоподачи большое влияние оказывает система подачи воздуха. Основным элементом подачи воздуха является воздухоочиститель, характеристики которого по мере загрязнения ухудшаются. Степень засоренности воздухоочистителя характеризуется разрежением во впускном воздушном тракте.

Диагностирование топливной системы дизельных двигателей с электронной системой управления подачи топлива рассмотрим на примере аккумуляторной системы с электрогидравлическим инжектором (насос-форсункой), позволяющим повысить давление впрыска до 200 МПа для перспективных моделей. Причем топливо постоянно поступает к инжектору при малом давлении (0,25 МПа).

Как правило, электрогидравлический инжектор имеет топливную и масляную секции, разделенные между собой в головке блока цилиндров при помощи уплотнительных колен. Масло к инжектору подается под высоким давлением (до 30 МПа) насосом высокого давления системы гидравлического управления через аккумулятор, где поддерживается постоянное давление. Величина высокого давления масла контролируется клапаном регулятора давления впрыска, управляемым сигналами от электронного блока управления (ЭБУ). На основе сигналов с датчиков (положение распредвала и частоты вращения, температуры воздуха, температуры охлаждающей жидкости, давления и расхода воздуха, положения акселератора, усилия на рабочем органе, состава отработавших газов и др.) ЭБУ формирует управляющий сигнал, который подается на соленоид, управляющий клапаном электрогидравлического инжектора. Этот клапан открывает подачу масла высокого давления с аккумулятора, которое перемещает плунжер внутри топливной секции инжектора, создавая высокое давление впрыска. Диагностирование рассматриваемой топливной системы выполняется через тестирование ее на мониторе постоянного действия: проверяется техническое состояние всех датчиков сравнением выходных сигналов с эталонными; оценивается нагрузочный режим; контролируются системы топлива; смазки и охлаждения.

В течение работы двигателя ЭБУ автоматически проводит тестирование его работоспособности и при обнаружении отклонений в функционировании систем устанавливает неисправность, а в критических ситуациях приводится в действие аварийное управление. Кроме того, память ЭБУ фиксирует время всех экстремальных событий.

Тестирование по запросу оператора проводится при отключенном (оценка электрических цепей) и работающем двигателе (оценка работоспособности регулятора давления впрыска, насоса масла высокого давления, системы контрольного давления впрыска, инжектора и т.д.). При оценке состояния инжектора ЭБУ управляет подачей топлива и определяет мощность каждого цилиндра. Эта проверка позволяет выявить неисправности и других систем, влияющих на мощность двигателя.

Уровень масла в картере двигателя всегда должен находиться у верхней метки указателя. Интенсивность изменения уровня масла во многом зависит от технического состояния двигателя. Расход масла не должен быть более 3,5% израсходованного топлива для карбюраторных двигателей и 5% для дизельных. При проверке уровня масла необходимо обращать внимание и на качество масла. Основное внимание при этом уделяют его прозрачности и отсутствию капель охлаждающей жидкости. Объективно качество масла оценивают методом спектрального анализа, когда пробу масла сжигают в высокотемпературном пламени и с помощью спектрографа регистрируют продукты износа. Полученные результату подвергают качественному и количественному анализу. Качественный анализ состоит в обнаружении спектральных линий, которые свидетельствуют о присутствии в масле металлов, а количественный — в определении интенсивности почернения спектральных линий. Присутствие в масле железа говорит об износе цилиндров, алюминия — поршней, хрома — колец, свинца — подшипников коленчатого вала и т.д. Кварц, оксиды алюминия характеризуют работоспособность воздухоочистителя или герметичность воздушного тракта, а также эффективность работы маслоочистителей. По изменению числа элементов, входящих в состав присадок, оценивают пригодность масла для дальнейшей эксплуатации.

Большое значение имеют способ и методика взятия проб на глубине 30-35 мм через отверстие маслоизмерительного щупа.

Проверка системы смазки включает и проверку работы масляного фильтра тонкой очистки. При температуре не ниже 70 °С ротор исправной центрифуги должен вращаться не менее 35 с после включения двигателя.

От технического состояния системы охлаждения во многом зависят топливная экономичность, мощность и надежность двигателя. Температура охлаждения жидкости должна поддерживаться в пределах 85-95 °С. При указанном режиме двигатель развивает максимальную мощность, имеет минимальный расход топлива и наименьшие износы.

Кроме температуры охлаждающей жидкости, контролируются герметичность системы охлаждения, натяжение ремня привода вентилятора и разность температур верхнего и нижнего бачков. Для проверки натяжения ремня вентилятора необходимо нажать на ремень в центре между шкивами с силой 30-40 Н и замерить прогиб, который не должен превышать 15—20 мм.

Уменьшение температурного перепада по сравнению с нормой (8-12 °С) свидетельствует о наличии накипи или загрязнении радиатора.

Герметичность системы охлаждения проверяют путем подачи воздуха под давлением 0,15 МПа через заливную горловину. После прекращения подачи воздуха фиксируют интенсивность падения давления (за 10 с оно должно падать не более чем на 0,01 МПа).

Определяем приращение параметров и остаточный ресурс.

Остаточный ресурс двигателя принимаем по предельному расходу масла на угар.

Локализацию конкретных неисправностей при оценке работоспособности двигателя можно осуществить через диагностическую матрицу.

Диагностирование работающего двигателя в целом производится по эффективной мощности, удельному расходу топлива, составу выхлопных газов и акустическим признакам. При допустимых значениях контролирующих параметров прогнозируется работоспособность двигателя на объекте и соответственно при предельных или при значениях остаточного ресурса менее наработки до первого технического обслуживания диагностируются его системы.

Наибольшее количество возможных неисправностей связано с топливной аппаратурой, о чем свидетельствует диагностическая матрица. Последовательность выполняемых операций при оценке технического состояния топливной аппаратуры дизельного двигателя при его трудном запуске: проверка состава и объема топлива; прокачка топливной системы, удаление воздуха; проверка давления, развиваемого топливным насосом высокого давления, и давления впрыска топлива; оценка степени загрязненности воздушного фильтра; проверка угла опережения впрыска.

При допустимых значениях параметров, оценивающих техническое состояние топливной аппаратуры, и трудном запуске двигателя проверяется герметичность цилиндра по давлению сжатия. При его значениях ниже допустимых пределов проверяются цилиндропоршневая группа и газораспределительный механизм по дополнительным параметрам, оценивающим техническое состояние этих систем. Трудность запуска также связано из-за заниженной частоты вращения коленчатого вала двигателя.

Поиск возможных неисправностей при легком запуске двигателя начинается с анализа показаний приборов, характеризующих его работоспособность, и акустических признаков неисправностей.

По давлению масла оценивают состояние кривошипно-шатунного механизма и системы смазки. Снижение давления масла из-за изнашивания сопряжений кривошипно-шатунного механизма оценивается посредством акустических признаков. Стуки слышны без приборов, но для лучшего восприятия их прослушивают стетоскопом или фонендоскопом. Стук коленчатого вала с изношенными коренными подшипниками глухого тона xoponio слышен вблизи разъема с картером, а в изношенных шатунных подшипниках — резкий стук в зоне верхнего положения шатунной шейки коленчатого вала. Стук в шатунных подшипниках легко можно определить, отключая поочередно цилиндры. В неработающем цилиндре он значительно усиливается. Стук поршневых пальцев в изношенных гнездах — редкий, в зоне цилиндров ближе к головке блока. Отсутствие стуков в кривошипно-шатунном механизме при низком давлении масла указывает на неисправность системы смазки.

Отклонение показаний указателя охлаждающей жидкости от оптимальной величины отражает неисправность системы охлаждения. Выявление конкретной неисправности производится по другим диагностическим параметрам, характеризующим ее работоспособность.

При затруднении определить неисправность по комбинации диагностических параметров проводится углубленное диагностирование с возможностью постановки диагноза по одному параметру. Например, при нарушении герметичности цилиндра неисправность определяют по месту выхода воздуха, подаваемого под давлением в цилиндр.

Читать далее:

Категория: - Диагностирование строительных машин

Главная → Справочник → Статьи → Форум



Разделы

Строительные машины и оборудование
Для специальных земляных работ
Дорожно-строительные машины
Строительное оборудование
Асфальтоукладчики и катки
Большегрузные машины
Строительные машины, часть 2,
Дорожные машины, часть 2
Ремонтные машины
Ковшовые машины
Автогрейдеры
Экскаваторы
Бульдозеры
Скреперы
Грейдеры Эксплуатация строительных машин
Эксплуатация средств механизации
Эксплуатация погрузочных машин
Эксплуатация паровых машин
Эксплуатация экскаваторов
Эксплуатация подъемников
Эксплуатация кранов перегружателей
Эксплуатация кузовов машин
Крановщикам и стропальщикам
Ремонт строительных машин
Ремонт дорожных машин
Ремонт лесозаготовительных машин
Ремонт автомобилей КАмаЗ
Техническое обслуживание автомобилей
Очистка автомобилей при ремонте
Материалы и шины