Строительные машины и оборудование, справочник






Гусеничная ходовая часть


Категория:
   Погрузочные машины для сыпучих материалов


Гусеничная ходовая часть

Рабочая поверхность траков может выполняться гладкой, ребристой или комбинированной. В последнем случае траки имеют гладкую опорную поверхность, а при необходимости могут быть оборудованы съемными шпорами. Выбор типа трактов зависит от особенностей почвы и величины тяговых усилий. Для погрузочных машин, работающих по крепкой и ровной почве, следует применять в основном гладкие траки. Наличие шпор вызывает значительное возрастание удельного давления на почву и возникновение высоких местных напряжений, что приводит к потере несущей способности почвы и разрушению дороги. Применение ребристых траков является вынужденным решением, характерным для работы машины по неустойчивому липкому и сыпучему основанию.

Рис. 1. Гусеничные траки с резиново-метал-лическими втулками.



Однако фактические удельные давления отличаются от рассчитанных по формуле и зависят от расположения центра тяжести машины, количества и конструкции опорных роликов. Длительные наблюдения за работой погрузочных машин в шахтных условиях показали, что при неровной почве удельные давления в 3—4 раза превышают расчетные. Ширину траков гусениц не следует принимать более 0,16—0,17 расстояния между центрами ведущего колеса и ленивца. Высота гусениц шахтных погрузочных машин не должна превышать 0,20—0,24 величины межцентрового расстояния гусениц.

Большое значение для безаварийной работы гусеничной ходовой части имеет правильный выбор типа и параметров траков. Наиболее целесообразно применять цельно-литые или штампованные траки с большой поперечной жесткостью. Сборные траки подвержены усиленному разбалчиванию, поэтому их применения следует избегать.

В условиях эксплуатации часто имеют место случаи, когда машина краем гусеницы наезжает на препятствие (например, кусок породы). В этом случае один трак воспринимает значительную часть веса всей машины и при недостаточной поперечной прочности ломается; такие явления часто наблюдались у погрузочных машин типа С-153, 0-5с, УП-3 и др. Трак по условиям поперечной прочности следует рассчитывать как балку на двух опорах с нагрузкой, приложенной посередине. Расчетная величина нагрузки должна быть не менее 40—50% веса машины.

Направляющее колесо (ленивец) служит для направления и создания необходимого натяжения гусеничной цепи; оно расположено, как правило, в передней части гусеничного хода, т. е. в конце нерабочей ветви гусеницы. Натяжение гусеничной цепи осуществляется либо путем перемещения оси ленивца в горизонтальных направляющих, либо путем поворота специального коленчатого вала, на котором насажен ленивец. В погрузочных машинах в основном используется первый способ. Натяжное приспособление может быть жестким или амортизирующим; в последнем случае натяжение создается регулировочным болтом через амортизирующую пружину, которая смягчает ударные нагрузки при наезде машины на препятствия и предохраняет гусеничную цепь от обрыва.

Натяжение цепи должно обеспечивать нормальное зацепление зубцов ведущего колеса со звеньями. Провисание гусеничной цепи вызывает вредные биения и повышенный износ как звеньев, так и зубьев звездочки. С другой стороны чрезмерное натяжение повышает трение в шарнирах, ведет к преждевременному износу узлов и к дополнительным потерям мощности. Наивыгоднейшее натяжение гусеничной цепи характеризуется некоторой оптимальной величиной провисания цепи между поддерживающими роликами, обычно принимаемой в пределах yg— ^ расстояния между осями поддерживающих роликов.

Поскольку погрузочные машины перемещаются с небольшими скоростями, влияние сил инерции на величину натяжения гусеничной цепи можно не учитывать.

Опорные ролики (катки) выполняются гладкими или с направляющими односторонними или двухсторонними ребордами. Для смягчения ударов и уменьшения шума опорные ролики иногда армируются резиновыми или пластмассовыми ободами.

По характеру расположения и закрепления опорных роликов гусеничные тележки подразделяются на жесткие и эластичные. При первой схеме оси опорных роликов жестко закреплены на раме гусеницы; в случае наезда одного-из роликов на препятствие вместе с ним сначала поднимается, а затем опускается с ударом вся рама гусеницы. Недостатком жесткой конструкции является появление больших динамических нагрузок, плохая приспособляемость к неровностям почвы и связанное с этим уменьшение сцепления гусениц с почвой и рост удельного давления на почву.

При эластичной конструкции опорные ролики попарно соединены в балансирные каретки, а оси роликов имеют независимое перемещение, что позволяет «обыгрывать» неровности почвы. В нормальном положении опорные ролики прижимаются к гусеничной ленте специальными пружинами. При наезде на препятствие поднимается только тот ролик, который непосредственно соприкасается с препятствием, поэтому отрыва всей гусеницы от почвы не происходит. Толчки от неровностей почвы амортизируются балансирными пружинами, что обеспечивает более спокойный характер работы. Однако балансирные каретки усложняют конструкцию гусеницы, поэтому их рекомендуется применять только в быстроходных машинах.

В некоторых конструкциях погрузочных машин (например, ППМК-90 Славянского КБ) вместо роликов применяются жесткие опорные направляющие лыжи, однако, в связи с большими потерями на трение и высоким износом, применение их нерационально.

Поддерживающие ролики служат для направления и поддержания верхней (нерабочей) ветви гусеничной цепи, устраняют излишнее провисание и вредное биение этой ветви. В некоторых моделях погрузочных машин вместо роликов установлены жесткие продольные направляющие.

Привод гусениц может быть групповым, центральным или индивидуальным. В первом случае отбор мощности на ходовую часть производится от двигателя, который служит для привода целой группы узлов, например, рабочего органа, конвейера, насоса и др. Кинематическая схема при групповом приводе отличается сложностью; приводной механизм в этом случае неудобен для осмотра и ремонта. К групповому приводу прибегают в тех случаях, когда машина не ограничена малыми габаритными размерами. Если на ходовой части установлен отдельный двигатель с приводом на обе гусеницы, то такой привод называется центральным. При индивидуальном приводе на каждой гусенице установлен независимый двигатель. Применение индивидуального привода позволяет более удачно решать конструктивную компоновку машины, так как несколько небольших двигателей проще разместить, чем один большой. Поэтому машины с небольшой высотой (0,6—0,8 м), как правило, имеют индивидуальный привод.

Червячные редукторы в отличие от шестеренчатых обладают компактностью и большими передаточными числами. Однако изготовление их сложно; кроме того, червячные передачи характеризуются более низким к. п. д. В отечественной горномашиностроительной практике стараются избегать применения червячных редукторов. Наоборот, для зарубежных погрузочных машин, особенно американских, характерно весьма широкое применение червячных передач. Так, на погрузочной машине Джой 18HR-2 установлено шесть червячных редукторов.

Рис. 2.
а — схема жесткой гусеницы! б — схема элестичной гусеницы,

Рис. 3. Индивидуальный привод на гусеницу погрузочно-доставочной машины МПДР-0,12.

Цепные передачи в отечественных гусеничных погрузочных машинах, как правило, не применяются. Однако полный отказ от применения цепных передач нельзя считать правильным, так как они обладают большими передаточными числами, не требуют специальных картеров, просты в изготовлении и легко заменяются в случае неисправности. В зарубежных моделях часто пользуются цепными передачами в сочетании с червячными редукторами. Такие схемы позволяют получить простую и компактную конструкцию привода гусениц. Включение и реверсирование гусениц производится при помощи бортовых фрикционов. Управление фрикционами производится при помощи гидравлических цилиндров и системы рычагов. Тормозов на гусеничных машинах не предусматривается.

По взаимному расположению ведущего колеса, ленивца и опорных роликов можно выделить три вида (группы) компоновки гусениц.

Первая группа характеризуется тем, что вес машины передается на гусеничную цепь не только опорными роликами, но также ведущим и направляющим колесами. Достоинством этой схемы является большая опорная поверхность при тех же размерах гусеничной ленты, а следовательно, лучшее сцепление и меньшее удельное давление на почву. Однако ведущие и направляющие колеса в этом случае испытывают дополнительную нагрузку и работают в тяжелых условиях; одновременно ухудшается проходимость гусеницы, так как при наезде на препятствие машина испытывает лобовое сопротивление.

Рис. 4. Бортовые фрикционы погрузочной машины Джой 18HR-2.

В гусеницах второй группы последний недостаток устранен за счет разгрузки направляющего колеса, которое несколько приподнято над почвой; это позволяет гусенице более плавно наезжать на препятствие. Недостатком такой схемы является некоторое уменьшение опорной поверхности гусениц; ведущее колесо при этом работает в таких же условиях, как и в предыдущей схеме.

В гусеницах третьей группы оба колеса разгружены и приподняты над уровнем почвы, что несколько повышает проходимость машины, но приводит к еще большему сокращению опорной поверхности и ухудшает сцепление гусениц с почвой и устойчивость машины. Окончательный выбор схемы расположения основных частей гусениц следует в связи с этим производить в соответствии с условиями работы, весом машины и свойствами пород почвы.

Одним из наиболее ответственных узлов гусеничной ходовой части является подвеска; по конструкции подвески различаются: жесткие, полужесткие и упругие.

Рис. 5. Схемы компоновки гусениц.

При жесткой подвеске рамы обеих гусениц жестко связаны между собой и с корпусом машины. В этом случае все удары, воспринимаемые гусеницами, полностью передаются корпусу машины, что отрицательно сказывается на прочности рабочих узлов машины, ослабляет крепление и регулировку. Поэтому применения жесткой подвески при конструировании погрузочных машин следует избегать.

В последние годы широкое применение находит полужесткая подвеска, при которой гусеницы погрузочных машин (например, машины Джой 18HR-2) связаны с корпусом машины только одной общей осью. В передней части корпус машины связывается с ходовой системой при помощи гидродомкратов или рессор, которые допускают значительные смещения гусениц в вертикальном направлении. Основное достоинство полужесткой подвески заключается в том, что при движении по неровной почве передняя рабочая кромка (носок) погрузочной машины не отрывается от почвы. Однако при этом не исключается воздействие на корпус машины ударных нагрузок.

Рис. 6. Типы подвески гусеничных машин:
а — жесткая подвеска; б — полужесткая подвеска.

Рис. 7. Вариант полужесткой подвески.

Большой интерес представляет новая конструктивная разновидность полужесткой подвески, схематически показанная на рис. 7. При такой схеме гусеничные тележки имеют две взаимно-перпендикулярные оси качания, что обеспечивает независимость каждой гусеницы при преодолении неровностей почвы.

Как показал опыт эксплуатации погрузочных машин на гусеничном ходу, в процессе работы часто наблюдаются случаи заклинивания отдельных кусков породы или руды между опорными роликами или ведущими колесами и гусеничной цепью, поэтому гусеницы должны быть надежно защищены с наружной стороны от попадания кусков материала.

Поскольку любая погрузочная машина работает в зоне штабеля насыпного груза, ширина захвата (фронт погрузки) должна быть больше общей ширины гусеничной тележки.

Кинематика и динамика гусеничного хода

Особенностью гусеничного хода является циклический характер изменения скорости цепи.

Рис. 8.
а — схёма изменения линейной скорости гусеничной цепи; б — схема определения скорости прямолинейно-поступательного движения гусеничной машины.

Однако гусеничная цепь стремится двигаться прямолинейно со скоростью, которая определяется как проекция скорости v ц на направление движения цепи.

Достоинством нормального зацепления является плавный режим работы гусеничной цепи, так как в этом случае отсутствует проскальзывание (рывки) цепи по ободу колеса и удары в момент входа цевки в зацепление. Вместе с тем при нормальном зацеплении тяговое усилие передается гусеничной цепи всеми зубьями, находящимися в зоне обхвата ведущего колеса, что обеспечивает уменьшение силовых нагрузок на каждый зуб и позволяет использовать более легкие конструкции ведущих колес. Однако в процессе работы происходит интенсивный износ поверхностей зацепления, в результате которого изменяется соотношение шага колеса и гусеницы.

Рис. 9. Гусеничное зацепление

Рис. 10. Построение профиля зацепления ведущего колеса с гусеницей.

Построение зацепления по такому методу обеспечивает надежную работу гусеницы в пределах допускаемого износа элементов зацепления.

Вследствие пульсирующей скорости и плохой амортизационной способности гусеничные погрузочные машины подвержены чрезвычайно интенсивной тряске при перемещении не только по неровной почве, но и по гладкому покрытию. Динамика вибрации возрастает с увеличением скорости движения и зависит от микрорельефа почвы. Специальные испытания показали, что тряска погрузочных машин с полужесткой подвеской при движении по относительно ровной, предварительно утрамбованной почве со скоростью 10 м/мин, достигает 6—7 колебаний в секунду, что вредно отражается на состоянии и долговечности всех узлов машины. Поэтому с точки зрения динамических и вибрационных нагрузок, возникающих в рабочих узлах машины при перемещении, гусеничная ходовая часть не является наиболее рациональным видом механизма передвижения погрузочных машин.

Читать далее:

Категория: - Погрузочные машины для сыпучих материалов

Главная → Справочник → Статьи → Форум



Разделы

Строительные машины и оборудование
Для специальных земляных работ
Дорожно-строительные машины
Строительное оборудование
Асфальтоукладчики и катки
Большегрузные машины
Строительные машины, часть 2,
Дорожные машины, часть 2
Ремонтные машины
Ковшовые машины
Автогрейдеры
Экскаваторы
Бульдозеры
Скреперы
Грейдеры Эксплуатация строительных машин
Эксплуатация средств механизации
Эксплуатация погрузочных машин
Эксплуатация паровых машин
Эксплуатация экскаваторов
Эксплуатация подъемников
Эксплуатация кранов перегружателей
Эксплуатация кузовов машин
Крановщикам и стропальщикам
Ремонт строительных машин
Ремонт дорожных машин
Ремонт лесозаготовительных машин
Ремонт автомобилей КАмаЗ
Техническое обслуживание автомобилей
Очистка автомобилей при ремонте
Материалы и шины